
Designing (Optimal) Multi-dimensional Blockchain Fees

Theo Diamandis
work with Guillermo Angeris, Alex Evans, Tarun Chitra, and Ciamac Moallemi

SBC 2024

Fee markets with fixed relative prices are
inefficient

This talk: a framework to optimally set
multi-dimensional fees for congestion control

1

Fee markets with fixed relative prices are
inefficient

This talk: a framework to optimally set
multi-dimensional fees for congestion control

1

Outline

Why are transactions so expensive?

Transactions and resources

The resource allocation problem

Setting prices via duality

Does gradient descent Just Work™?

Fixed relative prices limit throughput

Mempool

CPU

CPU

CPU

CPU

bandwidth

bandwidth

bandwidth

bandwidth

util = 4
cost = 1

util = 2
cost = 1

⁞⁞

Why are transactions so expensive? 2

Fixed relative prices limit throughput

Mempool

CPU

CPU

CPU

CPU

bandwidth

bandwidth

bandwidth

bandwidth

1d market
($gas = 3)util = 4

cost = 1
util = 2
cost = 1

⁞⁞

Why are transactions so expensive? 2

Fixed relative prices limit throughput

Mempool

CPU

CPU

CPU

CPU

bandwidth

bandwidth

bandwidth

bandwidth

1d market
($gas = 3)

CPU

CPU

CPU

CPU

util = 4
cost = 1

util = 2
cost = 1

⁞⁞

Why are transactions so expensive? 2

Fixed relative prices limit throughput

Mempool

CPU

CPU

CPU

CPU

bandwidth

bandwidth

bandwidth

bandwidth

1d market
($gas = 3)

CPU

CPU

CPU

CPU

util = 4
cost = 1

util = 2
cost = 1

X
⁞⁞

Why are transactions so expensive? 2

Fixed relative prices limit throughput

Mempool

CPU

CPU

CPU

CPU

bandwidth

bandwidth

bandwidth

bandwidth

1d market
($gas = 3)

CPU

CPU

CPU

CPU

2d market
($CPU = 3, $BW = 1)util = 4

cost = 1
util = 2
cost = 1

X
⁞⁞

Why are transactions so expensive? 2

Fixed relative prices limit throughput

Mempool

CPU

CPU

CPU

CPU

bandwidth

bandwidth

bandwidth

bandwidth

1d market
($gas = 3)

CPU

CPU

CPU

CPU

2d market
($CPU = 3, $BW = 1)

CPU

CPU

CPU

CPU

util = 4
cost = 1

util = 2
cost = 1

X
⁞⁞

Why are transactions so expensive? 2

Fixed relative prices limit throughput

Mempool

CPU

CPU

CPU

CPU

bandwidth

bandwidth

bandwidth

bandwidth

1d market
($gas = 3)

CPU

CPU

CPU

CPU

2d market
($CPU = 3, $BW = 1)

CPU

CPU

CPU

CPU

bandwidth

bandwidth

bandwidth

bandwidth

util = 4
cost = 1

util = 2
cost = 1

X
⁞⁞

Why are transactions so expensive? 2

Orthogonal resources should be priced separately

Why are transactions so expensive? 3

Outline

Why are transactions so expensive?

Transactions and resources

The resource allocation problem

Setting prices via duality

Does gradient descent Just Work™?

But what is a resource?

▶ Anything that can be metered!

▶ Blobs (EIP-2242 & EIP-4844)

▶ Compute, memory, storage

▶ Opcodes

▶ Sequences of opcodes

▶ Compute on a specific core

▶ ...

Transactions and resources 4

But what is a resource?

▶ Anything that can be metered!

▶ Blobs (EIP-2242 & EIP-4844)

▶ Compute, memory, storage

▶ Opcodes

▶ Sequences of opcodes

▶ Compute on a specific core

▶ ...

Transactions and resources 4

But what is a resource?

▶ Anything that can be metered!

▶ Blobs (EIP-2242 & EIP-4844)

▶ Compute, memory, storage

▶ Opcodes

▶ Sequences of opcodes

▶ Compute on a specific core

▶ ...

Transactions and resources 4

But what is a resource?

▶ Anything that can be metered!

▶ Blobs (EIP-2242 & EIP-4844)

▶ Compute, memory, storage

▶ Opcodes

▶ Sequences of opcodes

▶ Compute on a specific core

▶ ...

Transactions and resources 4

But what is a resource?

▶ Anything that can be metered!

▶ Blobs (EIP-2242 & EIP-4844)

▶ Compute, memory, storage

▶ Opcodes

▶ Sequences of opcodes

▶ Compute on a specific core

▶ ...

Transactions and resources 4

But what is a resource?

▶ Anything that can be metered!

▶ Blobs (EIP-2242 & EIP-4844)

▶ Compute, memory, storage

▶ Opcodes

▶ Sequences of opcodes

▶ Compute on a specific core

▶ ...

Transactions and resources 4

But what is a resource?

▶ Anything that can be metered!

▶ Blobs (EIP-2242 & EIP-4844)

▶ Compute, memory, storage

▶ Opcodes

▶ Sequences of opcodes

▶ Compute on a specific core

▶ ...

Transactions and resources 4

But what is a resource?

▶ Anything that can be metered!

▶ Blobs (EIP-2242 & EIP-4844)

▶ Compute, memory, storage

▶ Opcodes

▶ Sequences of opcodes

▶ Compute on a specific core

▶ ...

Transactions and resources 4

Let’s formalize this

▶ A transaction j consumes a vector of resources aj ∈ Rm
+

– Entry (aj)i denotes the amount of resource i consumed by tx j

▶ The vector x ∈ {0, 1}n records which of n possible txns are included in a block
– Entry xj = 1 if tx j is included and 0 otherwise

▶ The quantity of resources consumed by this block is then

y =
n∑

j=1

xjaj = Ax

Transactions and resources 5

Let’s formalize this

▶ A transaction j consumes a vector of resources aj ∈ Rm
+

– Entry (aj)i denotes the amount of resource i consumed by tx j

▶ The vector x ∈ {0, 1}n records which of n possible txns are included in a block
– Entry xj = 1 if tx j is included and 0 otherwise

▶ The quantity of resources consumed by this block is then

y =
n∑

j=1

xjaj = Ax

Transactions and resources 5

Let’s formalize this

▶ A transaction j consumes a vector of resources aj ∈ Rm
+

– Entry (aj)i denotes the amount of resource i consumed by tx j

▶ The vector x ∈ {0, 1}n records which of n possible txns are included in a block
– Entry xj = 1 if tx j is included and 0 otherwise

▶ The quantity of resources consumed by this block is then

y =
n∑

j=1

xjaj = Ax

Transactions and resources 5

We constrain & charge for each resource used

▶ Define a resource consumption target b⋆

– Deviation from the target is Ax − b⋆

– In Ethereum, b⋆ = 15M gas

▶ Define a resource consumption limit b

– Txns included must satisfy Ax ≤ b

▶ Charge for usage of each resource (e.g., EIP-1559)
– Prices p, mean that transaction j costs (this is burned, i.e., this is the base fee)

pTaj =
m∑
i=1

pi (aj)i

Transactions and resources 6

We constrain & charge for each resource used

▶ Define a resource consumption target b⋆

– Deviation from the target is Ax − b⋆

– In Ethereum, b⋆ = 15M gas

▶ Define a resource consumption limit b

– Txns included must satisfy Ax ≤ b

▶ Charge for usage of each resource (e.g., EIP-1559)
– Prices p, mean that transaction j costs (this is burned, i.e., this is the base fee)

pTaj =
m∑
i=1

pi (aj)i

Transactions and resources 6

We constrain & charge for each resource used

▶ Define a resource consumption target b⋆

– Deviation from the target is Ax − b⋆

– In Ethereum, b⋆ = 15M gas

▶ Define a resource consumption limit b

– Txns included must satisfy Ax ≤ b

▶ Charge for usage of each resource (e.g., EIP-1559)
– Prices p, mean that transaction j costs (this is burned, i.e., this is the base fee)

pTaj =
m∑
i=1

pi (aj)i

Transactions and resources 6

But how do we determine prices?

▶ We want a few properties:
– (Ax)i = b⋆i → no update

– (Ax)i > b⋆i → pi increases

– (Ax)i < b⋆i → pi decreases

▶ Proposal (multidimensional EIP-4844):
pt+1
i = pti · exp (η(Ax − b⋆)i)

Is this a good update rule?

Transactions and resources 7

But how do we determine prices?

▶ We want a few properties:
– (Ax)i = b⋆i → no update

– (Ax)i > b⋆i → pi increases

– (Ax)i < b⋆i → pi decreases

▶ Proposal (multidimensional EIP-4844):
pt+1
i = pti · exp (η(Ax − b⋆)i)

Is this a good update rule?

Transactions and resources 7

But how do we determine prices?

▶ We want a few properties:
– (Ax)i = b⋆i → no update

– (Ax)i > b⋆i → pi increases

– (Ax)i < b⋆i → pi decreases

▶ Proposal (multidimensional EIP-4844):
pt+1
i = pti · exp (η(Ax − b⋆)i)

Is this a good update rule?

Transactions and resources 7

Update rules are implicitly solving an
optimization problem

Specific choice of objective by network designer
=⇒ specific update rule

Transactions and resources 8

Update rules are implicitly solving an
optimization problem

Specific choice of objective by network designer
=⇒ specific update rule

Transactions and resources 8

Outline

Why are transactions so expensive?

Transactions and resources

The resource allocation problem

Setting prices via duality

Does gradient descent Just Work™?

Setting (for now):

Network designer is omniscient and determines
txns in each block

The resource allocation problem 9

Loss function is network’s unhappiness with resource usage

▶ Network designer determines loss function for resource allocation problem; e.g.:

ℓ(y) =

{
0 y = b⋆

∞ otherwise

ℓ(y) =

{
0 y ≤ b⋆

∞ otherwise

The resource allocation problem 10

Loss function is network’s unhappiness with resource usage

▶ Network designer determines loss function for resource allocation problem; e.g.:

ℓ(y) =

{
0 y = b⋆

∞ otherwise

ℓ(y) =

{
0 y ≤ b⋆

∞ otherwise

The resource allocation problem 10

We encode all tx constraints in set S

▶ S ⊆ {0, 1}n is the set of allowable transactions
– Network constraints, e.g., Ax ≤ b

– Interactions among txns, e.g., bidders for MEV opportunity

The resource allocation problem 11

Transaction producers get utility from each included tx

▶ Tx producers = users + validators

▶ If tx j is included, tx producers get (joint) utility qj

▶ We almost never know q in practice

▶ But we will see that the network does not need to know q!

The resource allocation problem 12

Transaction producers get utility from each included tx

▶ Tx producers = users + validators

▶ If tx j is included, tx producers get (joint) utility qj

▶ We almost never know q in practice

▶ But we will see that the network does not need to know q!

The resource allocation problem 12

Transaction producers get utility from each included tx

▶ Tx producers = users + validators

▶ If tx j is included, tx producers get (joint) utility qj

▶ We almost never know q in practice

▶ But we will see that the network does not need to know q!

The resource allocation problem 12

Transaction producers get utility from each included tx

▶ Tx producers = users + validators

▶ If tx j is included, tx producers get (joint) utility qj

▶ We almost never know q in practice

▶ But we will see that the network does not need to know q!

The resource allocation problem 12

The resource allocation problem

maximize qT x − ℓ(y)

subject to y = Ax

x ∈ S .

The resource allocation problem 13

The resource allocation problem

maximize qT x − ℓ(y)

subject to y = Ax

x ∈ S .

▶ Objective: Maximize utility of included txns minus the loss incurred by the
network

The resource allocation problem 13

The resource allocation problem

maximize qT x − ℓ(y)

subject to y = Ax

x ∈ S .

▶ Objective: Maximize utility of included txns minus the loss incurred by the
network

▶ Constraints: Utilization y is resource usage of included txns, and x is in the set of
allowable txns S ⊆ {0, 1}n (can be very complex/hard to solve!)

The resource allocation problem 13

The resource allocation problem

maximize qT x − ℓ(y)

subject to y = Ax

x ∈ S .

▶ But network designer cannot solve this in practice!
– Doesn’t decide which txns are in a block (block builders do this)

– Doesn’t know utilities q

▶ Goal: set prices so that this problem is solved optimally on average

The resource allocation problem 14

The resource allocation problem

maximize qT x − ℓ(y)

subject to y = Ax

x ∈ S .

▶ But network designer cannot solve this in practice!
– Doesn’t decide which txns are in a block (block builders do this)

– Doesn’t know utilities q

▶ Goal: set prices so that this problem is solved optimally on average

The resource allocation problem 14

Outline

Why are transactions so expensive?

Transactions and resources

The resource allocation problem

Setting prices via duality

Does gradient descent Just Work™?

Duality theory: relaxing constraints to penalties

maximize qT x − ℓ(y)

subject to y = Ax

x ∈ S .

▶ Network designer cares about utilization y , based on txns x

▶ Block builders only care about which txns they can include

Setting prices via duality 15

Duality theory: relaxing constraints to penalties

maximize qT x − ℓ(y)

subject to y = Ax

x ∈ S

▶ Network designer cares about utilization y , based on txns x

▶ Block builders only care about which txns they can include

▶ We will ‘decouple’ utilization of network and that of tx producers

▶ Correctly set penalty → dual problem = original problem & utilizations are equal

Setting prices via duality 16

Duality theory: relaxing constraints to penalties

maximize qT x − ℓ(y)

subject to y = Ax

x ∈ S

▶ Network designer cares about utilization y , based on txns x

▶ Block builders only care about which txns they can include

▶ We will ‘decouple’ utilization of network and that of tx producers

▶ Correctly set penalty → dual problem = original problem & utilizations are equal

Setting prices via duality 16

Dual decouples tx producers and network

▶ Dual problem is to find the prices p that minimize dual function g(p)

▶ From before, p are the prices for violating prev. constraint y = Ax

– Relaxing constraint to penalty → pay per unit violation

▶ Problem is separable, so g(p) decomposes into two easily interpretable terms:

g(p) = sup
y

(
pT y − ℓ(y)

)
︸ ︷︷ ︸

network

+ sup
x∈S

(q − ATp)T x︸ ︷︷ ︸
tx producers

▶ Evaluating the 1st term is easy (conjugate function). Let’s look at the 2nd...

Setting prices via duality 17

Dual decouples tx producers and network

▶ Dual problem is to find the prices p that minimize dual function g(p)

▶ From before, p are the prices for violating prev. constraint y = Ax

– Relaxing constraint to penalty → pay per unit violation

▶ Problem is separable, so g(p) decomposes into two easily interpretable terms:

g(p) = sup
y

(
pT y − ℓ(y)

)
︸ ︷︷ ︸

network

+ sup
x∈S

(q − ATp)T x︸ ︷︷ ︸
tx producers

▶ Evaluating the 1st term is easy (conjugate function). Let’s look at the 2nd...

Setting prices via duality 17

Dual decouples tx producers and network

▶ Dual problem is to find the prices p that minimize dual function g(p)

▶ From before, p are the prices for violating prev. constraint y = Ax

– Relaxing constraint to penalty → pay per unit violation

▶ Problem is separable, so g(p) decomposes into two easily interpretable terms:

g(p) = sup
y

(
pT y − ℓ(y)

)
︸ ︷︷ ︸

network

+ sup
x∈S

(q − ATp)T x︸ ︷︷ ︸
tx producers

▶ Evaluating the 1st term is easy (conjugate function). Let’s look at the 2nd...

Setting prices via duality 17

Second term: block building problem

▶ Maximize net utility (utility minus cost) subject to tx constraints

maximize (q − ATp)T x

subject to x ∈ S .

▶ Exact problem solved by block producers! → Network can observe x⋆

Setting prices via duality 18

Second term: block building problem

▶ Maximize net utility (utility minus cost) subject to tx constraints

maximize (q − ATp)T x

subject to x ∈ S .

▶ Exact problem solved by block producers! → Network can observe x⋆

Setting prices via duality 18

What do we get at optimality?

▶ Let p⋆ be a minimizer of g(p), i.e., prices are set optimally

▶ Assume the block building problem has optimal solution x⋆

▶ The optimality conditions are that ‘supply’ matches ‘demand’

∇g(p⋆) = y⋆ − Ax⋆ = 0

where y⋆ satisfies ∇ℓ(y⋆) = p⋆

Setting prices via duality 19

Key results

1. Prices that minimize g charge the tx producers exactly the
marginal costs faced by the network:

∇ℓ(Ax⋆) = p⋆

2. These prices incentivize tx producers to include txns that
maximize welfare generated qTx minus the network loss ℓ(Ax)

Setting prices via duality 20

Key results

1. Prices that minimize g charge the tx producers exactly the
marginal costs faced by the network:

∇ℓ(Ax⋆) = p⋆

2. These prices incentivize tx producers to include txns that
maximize welfare generated qTx minus the network loss ℓ(Ax)

Setting prices via duality 20

Cool. So how do we minimize g(p)?

▶ We can compute the gradient:

∇g(p) = y⋆(p)− Ax⋆(p)

▶ Network determines y⋆(p) (computationally easy)

▶ Network observes x⋆(p) from previous block (block building problem soln)

▶ Then network applies favorite optimization method (e.g., gradient descent)

pt+1 = pt − η∇g(pt)

Setting prices via duality 21

Cool. So how do we minimize g(p)?

▶ We can compute the gradient:

∇g(p) = y⋆(p)− Ax⋆(p)

▶ Network determines y⋆(p) (computationally easy)

▶ Network observes x⋆(p) from previous block (block building problem soln)

▶ Then network applies favorite optimization method (e.g., gradient descent)

pt+1 = pt − η∇g(pt)

Setting prices via duality 21

Cool. So how do we minimize g(p)?

▶ We can compute the gradient:

∇g(p) = y⋆(p)− Ax⋆(p)

▶ Network determines y⋆(p) (computationally easy)

▶ Network observes x⋆(p) from previous block (block building problem soln)

▶ Then network applies favorite optimization method (e.g., gradient descent)

pt+1 = pt − η∇g(pt)

Setting prices via duality 21

Cool. So how do we minimize g(p)?

▶ We can compute the gradient:

∇g(p) = y⋆(p)− Ax⋆(p)

▶ Network determines y⋆(p) (computationally easy)

▶ Network observes x⋆(p) from previous block (block building problem soln)

▶ Then network applies favorite optimization method (e.g., gradient descent)

pt+1 = pt − η∇g(pt)

Setting prices via duality 21

Outline

Why are transactions so expensive?

Transactions and resources

The resource allocation problem

Setting prices via duality

Does gradient descent Just Work™?

Let’s play a game

▶ Two players: network and block producers. At block t:

1. Network chooses prices pt

2. Users submit txns (with utilities qt , resources At), possibly adversarially!

3. Network receives payoff gt(p
t) (from duality)

▶ Metric: regret of the network (‘welfare gap’)

1
T

(
T∑
t=1

gt(p
t)−min

p⋆

T∑
t=1

gt(p
⋆)

)

▶ Interpretation: difference between dynamic update rule and the best fixed prices p⋆

– Knowing p⋆ requires omniscience: assumes you know all future txns!

Does gradient descent Just Work™? 22

Let’s play a game

▶ Two players: network and block producers. At block t:
1. Network chooses prices pt

2. Users submit txns (with utilities qt , resources At), possibly adversarially!

3. Network receives payoff gt(p
t) (from duality)

▶ Metric: regret of the network (‘welfare gap’)

1
T

(
T∑
t=1

gt(p
t)−min

p⋆

T∑
t=1

gt(p
⋆)

)

▶ Interpretation: difference between dynamic update rule and the best fixed prices p⋆

– Knowing p⋆ requires omniscience: assumes you know all future txns!

Does gradient descent Just Work™? 22

Let’s play a game

▶ Two players: network and block producers. At block t:
1. Network chooses prices pt

2. Users submit txns (with utilities qt , resources At), possibly adversarially!

3. Network receives payoff gt(p
t) (from duality)

▶ Metric: regret of the network (‘welfare gap’)

1
T

(
T∑
t=1

gt(p
t)−min

p⋆

T∑
t=1

gt(p
⋆)

)

▶ Interpretation: difference between dynamic update rule and the best fixed prices p⋆

– Knowing p⋆ requires omniscience: assumes you know all future txns!

Does gradient descent Just Work™? 22

Let’s play a game

▶ Two players: network and block producers. At block t:
1. Network chooses prices pt

2. Users submit txns (with utilities qt , resources At), possibly adversarially!

3. Network receives payoff gt(p
t) (from duality)

▶ Metric: regret of the network (‘welfare gap’)

1
T

(
T∑
t=1

gt(p
t)−min

p⋆

T∑
t=1

gt(p
⋆)

)

▶ Interpretation: difference between dynamic update rule and the best fixed prices p⋆

– Knowing p⋆ requires omniscience: assumes you know all future txns!

Does gradient descent Just Work™? 22

Let’s play a game

▶ Two players: network and block producers. At block t:
1. Network chooses prices pt

2. Users submit txns (with utilities qt , resources At), possibly adversarially!

3. Network receives payoff gt(p
t) (from duality)

▶ Metric: regret of the network (‘welfare gap’)

1
T

(
T∑
t=1

gt(p
t)−min

p⋆

T∑
t=1

gt(p
⋆)

)

▶ Interpretation: difference between dynamic update rule and the best fixed prices p⋆

– Knowing p⋆ requires omniscience: assumes you know all future txns!

Does gradient descent Just Work™? 22

Main result:

▶ Gradient descent price update with fixed step size η = M/B
√
T gives

1
T

(
T∑
t=1

gt(p
t)−min

p⋆

T∑
t=1

gt(p
⋆)

)
≤ 4MB√

T

where B and M are constants.

▶ Regret is O(1/
√
T) and goes to 0 as T gets large!

▶ This result does not assume any model or notion of stochasticity
– No assumption that there exists a particular distribution for txns

– Agents mess with your protocol! Need adversarial bounds.

▶ Online convex optimization shines in this setting (common in blockchains!)
– Note: does not require that we ever converge to the optimal fixed price p⋆

Does gradient descent Just Work™? 23

Main result:

▶ Gradient descent price update with fixed step size η = M/B
√
T gives

1
T

(
T∑
t=1

gt(p
t)−min

p⋆

T∑
t=1

gt(p
⋆)

)
≤ 4MB√

T

where B and M are constants.

▶ Regret is O(1/
√
T) and goes to 0 as T gets large!

▶ This result does not assume any model or notion of stochasticity
– No assumption that there exists a particular distribution for txns

– Agents mess with your protocol! Need adversarial bounds.

▶ Online convex optimization shines in this setting (common in blockchains!)
– Note: does not require that we ever converge to the optimal fixed price p⋆

Does gradient descent Just Work™? 23

Main result:

▶ Gradient descent price update with fixed step size η = M/B
√
T gives

1
T

(
T∑
t=1

gt(p
t)−min

p⋆

T∑
t=1

gt(p
⋆)

)
≤ 4MB√

T

where B and M are constants.

▶ Regret is O(1/
√
T) and goes to 0 as T gets large!

▶ This result does not assume any model or notion of stochasticity
– No assumption that there exists a particular distribution for txns

– Agents mess with your protocol! Need adversarial bounds.

▶ Online convex optimization shines in this setting (common in blockchains!)
– Note: does not require that we ever converge to the optimal fixed price p⋆

Does gradient descent Just Work™? 23

Main result:

▶ Gradient descent price update with fixed step size η = M/B
√
T gives

1
T

(
T∑
t=1

gt(p
t)−min

p⋆

T∑
t=1

gt(p
⋆)

)
≤ 4MB√

T

where B and M are constants.

▶ Regret is O(1/
√
T) and goes to 0 as T gets large!

▶ This result does not assume any model or notion of stochasticity
– No assumption that there exists a particular distribution for txns

– Agents mess with your protocol! Need adversarial bounds.

▶ Online convex optimization shines in this setting (common in blockchains!)
– Note: does not require that we ever converge to the optimal fixed price p⋆

Does gradient descent Just Work™? 23

Main result II:

▶ This scheme is optimal in a certain sense: zero regret on average (with correct
step size)

– Directly from basic online convex optimization results

– There exists a (stochastic) adversary that matches this bound

– If utilization is stochastic, prices converge to clearing price

▶ This result is stronger than ‘traditional’ game theoretic results:
– Does not require the adversary to be rational

– Only requires adversary to be bounded (e.g., have a budget or max block size)

– Does not require playing to an equilibrium

Does gradient descent Just Work™? 24

Main result II:

▶ This scheme is optimal in a certain sense: zero regret on average (with correct
step size)

– Directly from basic online convex optimization results

– There exists a (stochastic) adversary that matches this bound

– If utilization is stochastic, prices converge to clearing price
▶ This result is stronger than ‘traditional’ game theoretic results:

– Does not require the adversary to be rational

– Only requires adversary to be bounded (e.g., have a budget or max block size)

– Does not require playing to an equilibrium

Does gradient descent Just Work™? 24

Some simple examples:

Update rule Loss function

pt+1 = pt − η(b⋆ − Ax⋆) ℓ(y) =

{
0 y = b⋆

∞ otherwise

pt+1
i = pti · exp (η(Ax − b⋆)i) above with mirror descent

pt+1 =
(
pt − η(b⋆ − Ax⋆)

)
+

ℓ(y) =

{
0 y ≤ b⋆

∞ otherwise

Does gradient descent Just Work™? 25

Some simple examples:

Update rule Loss function

pt+1 = pt − η(b⋆ − Ax⋆) ℓ(y) =

{
0 y = b⋆

∞ otherwise

pt+1
i = pti · exp (η(Ax − b⋆)i) above with mirror descent

pt+1 =
(
pt − η(b⋆ − Ax⋆)

)
+

ℓ(y) =

{
0 y ≤ b⋆

∞ otherwise

Does gradient descent Just Work™? 25

Some simple examples:

Update rule Loss function

pt+1 = pt − η(b⋆ − Ax⋆) ℓ(y) =

{
0 y = b⋆

∞ otherwise

pt+1
i = pti · exp (η(Ax − b⋆)i) above with mirror descent

pt+1 =
(
pt − η(b⋆ − Ax⋆)

)
+

ℓ(y) =

{
0 y ≤ b⋆

∞ otherwise

Does gradient descent Just Work™? 25

Conclusion: choose your objective, not the update rule!

Choice of objective function by network designer yields an
“optimal” price update rule via our optimization-based framework

No difference between ‘correctly’ fixing prices with oracle knowledge
of future and using online gradient descent algorithm.

These results hold without assumptions of demand distributions or of
market-clearing prices!

Wrap up 26

Conclusion: choose your objective, not the update rule!

Choice of objective function by network designer yields an
“optimal” price update rule via our optimization-based framework

No difference between ‘correctly’ fixing prices with oracle knowledge
of future and using online gradient descent algorithm.

These results hold without assumptions of demand distributions or of
market-clearing prices!

Wrap up 26

Conclusion: choose your objective, not the update rule!

Choice of objective function by network designer yields an
“optimal” price update rule via our optimization-based framework

No difference between ‘correctly’ fixing prices with oracle knowledge
of future and using online gradient descent algorithm.

These results hold without assumptions of demand distributions or of
market-clearing prices!

Wrap up 26

Extensions and future work

▶ What should the resources be?
– How do you optimally trade-off between complexity & ease of use?
– How do you design a loss function for desired performance characteristics?
– Implementations by Avalanche and Penumbra teams may provide insights
– Related to blob pricing and L1 vs L2 gas on rollups

▶ What update rules are most useful? [Convergence behavior vs. complexity]

▶ Likely relevant for many similar mechanisms...

Wrap up 27

Extensions and future work

▶ What should the resources be?
– How do you optimally trade-off between complexity & ease of use?
– How do you design a loss function for desired performance characteristics?
– Implementations by Avalanche and Penumbra teams may provide insights
– Related to blob pricing and L1 vs L2 gas on rollups

▶ What update rules are most useful? [Convergence behavior vs. complexity]

▶ Likely relevant for many similar mechanisms...

Wrap up 27

Extensions and future work

▶ What should the resources be?
– How do you optimally trade-off between complexity & ease of use?
– How do you design a loss function for desired performance characteristics?
– Implementations by Avalanche and Penumbra teams may provide insights
– Related to blob pricing and L1 vs L2 gas on rollups

▶ What update rules are most useful? [Convergence behavior vs. complexity]

▶ Likely relevant for many similar mechanisms...

Wrap up 27

For more info, check out our paper!

Paper

Thank you!

Theo Diamandis

tdiamand@mit.edu
@theo_diamandis

Wrap up 28

Appendix

Wrap up 29

Multidimensional fees increase throughput

Wrap up 30

Even when the tx distribution shifts

Wrap up 31

And resource utilitaztion better tracks targets

Multidimensional fees 1d fees

Wrap up 32

	Why are transactions so expensive?
	Transactions and resources
	The resource allocation problem
	Setting prices via duality
	Does gradient descent Just Work™?
	Wrap up

