Faster optimization using RandomizedPreconditioners.jl

Theo Diamandis

Work with Z. Frangella, B. Stellato, M. Udell, and S. Zhao

ICCOPT 2022

Many ways to speed up optimization

- 1. Speed up convergence (fewer iterations)
 - New algorithms
 - Better parameter selection
- 2. Speed up iterations of existing algorithms

3. ...

Many ways to speed up optimization

- 1. Speed up convergence (fewer iterations)
 - New algorithms
 - Better parameter selection
- 2. Speed up iterations of existing algorithms \leftarrow this talk

3. ...

Linear system solves dominate solve time

▶ We consider quadratic programs (QPs) of the form

minimize
$$(1/2)x^T P x + q^T x$$

subject to $Ax = z$
 $l \le z \le u$,

Linear system solves dominate solve time

We consider quadratic programs (QPs) of the form

minimize
$$(1/2)x^T P x + q^T x$$

subject to $Ax = z$
 $l \le z \le u$,

► ADMM (as in OSQP [Ste+20]) consists of the following steps:

$$\begin{aligned} x^{k+1} \leftarrow (P + \sigma I + \rho A^T A)^{-1} (\sigma x^k - q + A^T (\rho z^k - y^k)) \\ z^{k+1} \leftarrow \Pi_{[I,u]} \left(A x^{k+1} + \rho^{-1} y^k \right) \\ y^{k+1} \leftarrow y^k + \rho (A x^{k+1} - z^{k+1}) \end{aligned}$$

Linear system solves dominate solve time

We consider quadratic programs (QPs) of the form

minimize
$$(1/2)x^T P x + q^T x$$

subject to $Ax = z$
 $l \le z \le u$,

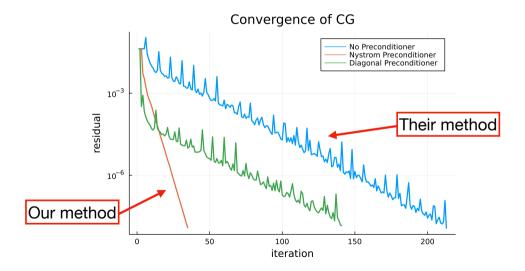
► ADMM (as in OSQP [Ste+20]) consists of the following steps:

$$x^{k+1} \leftarrow (P + \sigma I + \rho A^T A)^{-1} (\sigma x^k - q + A^T (\rho z^k - y^k))$$
$$z^{k+1} \leftarrow \Pi_{[I,u]} \left(A x^{k+1} + \rho^{-1} y^k \right)$$
$$y^{k+1} \leftarrow y^k + \rho (A x^{k+1} - z^{k+1})$$

Idea: speed up bottleneck

Faster linear system solves ↓ Faster ADMM for QPs

Method: construct a good preconditioner



Outline

Preconditioning Linear Systems

Implementation: RandomizedPreconditioners.jl

Examples

Back to Optimization

Wrap Up

Preconditioning Linear Systems

We want to quickly solve Ax = b

▶ We focus on large systems of the form

 $(A + \mu I)x = b$

where $A \in \mathbb{S}^n_+$ and $\mu \geq 0$.

Preconditioning Linear Systems

We want to quickly solve Ax = b

▶ We focus on large systems of the form

 $(A + \mu I)x = b$

where $A \in \mathbb{S}^n_+$ and $\mu \geq 0$.

"Large" means a direct solve is not computationally feasible.

We want to quickly solve Ax = b

We focus on large systems of the form

 $(A + \mu I)x = b$

where $A \in \mathbb{S}^n_+$ and $\mu \geq 0$.

"Large" means a direct solve is not computationally feasible.

Ideas can be extended to other systems.

Preconditioning Linear Systems

We use the conjugate gradient method (CG)

• CG only requires matrix vector products: $v \mapsto Av$

CG converges quickly when

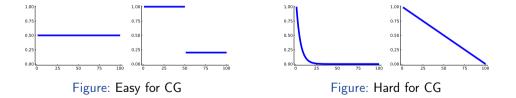
1. The condition number of A is small

2. The eigenvalues of A are clustered

We use the conjugate gradient method (CG)

• CG only requires matrix vector products: $v \mapsto Av$

- CG converges quickly when
 - 1. The condition number of A is small
 - 2. The eigenvalues of A are clustered



A preconditioner can make the spectrum of A "nice"

Goal: Find a *preconditioner P* such that:

1. $v \mapsto P^{-1}v$ is easily evaluated

2. $P^{-1/2}(A + \mu I)P^{-1/2}$ has a "nice" spectrum for CG

Idea: figure out what you want, then approximate

We find the best possible preconditioner and instead of computing it exactly (slow), approximate it (fast).

We precondition using the dominant eigenspace

► Ideally, if we had access to the rank-*k* eigendecomposition $\lfloor A \rfloor_k = V_k \Lambda_k V_k^T$ and λ_{k+1} we would use

$$P = \frac{1}{\lambda_{k+1} + \mu} V_k (\Lambda_k + \mu I) V_k^T + I - V_k V_k^T.$$

- P admits an explicit cheap to apply inverse.
- Preconditioned system satisfies

$$\kappa_2(P^{-1/2}A_{\mu}P^{-1/2}) = \frac{\lambda_{k+1} + \mu}{\lambda_n + \mu}.$$

Preconditioning Linear Systems

Approximate a decomposition via the Nystöm Sketch

Computing exact partial eigendecompositions is expensive.

► The Nyström sketch gives an approximate eigendecomposition,

$$\hat{A}_{\rm nys} = (A\Omega)(\Omega^{T}A\Omega)^{\dagger}(A\Omega)^{T} = \hat{V}\hat{\Lambda}\hat{V}^{T}.$$

- $\Omega \in \mathbb{R}^{n imes k}$ is a random test matrix
 - A common choice is a standard normal Gaussian matrix.

The Nystöm Sketch comes from a best fit problem

> The Nyström sketch solves the optimization problem,

$$\hat{A}_{ ext{nys}} = rac{rgmin}{ ext{range}(\hat{A}) \subset ext{range}(A\Omega)} \|A - \hat{A}\|_F^2.$$

Preconditioning Linear Systems

And sketching works well if the spectrum decays [FTU21]

Approximation error depends on tail-eigenvalues¹:

$$\mathbb{E}\|A - \hat{A}_r\| \leq 3\lambda_r + \frac{4e^2}{r}\sum_{j=r}^n \lambda_j$$

System is well-conditioned in expectation (if *r* is large enough):

$$\mathbb{E}\left[\kappa\left(P^{-1/2}(A+\mu I)P^{-1/2}\right)\right] < 28.$$

¹See [FTU21] for a more refined bound Preconditioning Linear Systems

Outline

Preconditioning Linear Systems

Implementation: RandomizedPreconditioners.jl

Examples

Back to Optimization

Wrap Up

Implementation: RandomizedPreconditioners.jl

Preconditioners can be constructed easily

It only takes two lines of code!

using RandomizedPreconditioners Anys = NystromSketch(A, k, r) P = NystromPreconditioner(Anys, µ)

Preconditioners can be constructed easily

It only takes two lines of code!

```
using RandomizedPreconditioners
Anys = NystromSketch(A, k, r)
P = NystromPreconditioner(Anys, µ)
```

```
▶ And we can get P^{-1} as well:
```

Pinv = NystromPreconditionerInverse(Anys, μ)

Implementation: RandomizedPreconditioners.jl

Preconditioners have efficient operations for solvers

- We use multiple dispatch to implement efficient
 - ldiv! for ${\tt P}$ and
 - mul! for Pinv

Preconditioners have efficient operations for solvers

- We use multiple dispatch to implement efficient
 - ldiv! for ${\tt P}$ and
 - mul! for Pinv
- These preconditioners can be easily passed to interative solvers:

```
using Krylov
x, stats = cg(A+µ*I, b; M=Pinv)
```

```
using IterativeSolvers
x, ch = cg(ATA, b; Pl = P, log=true)
```

Implementation: RandomizedPreconditioners.jl

Several sketches are included

Positive semidefinite matrices: Nyström Sketch

 $\hat{A} = NystromSketch(A, k, r)$

Several sketches are included

Positive semidefinite matrices: Nyström Sketch

 $\hat{A} = NystromSketch(A, k, r)$

Symmetric matrices: Eigen Sketch

 $\hat{A} = EigenSketch(A, k, r)$

Implementation: RandomizedPreconditioners.jl

Several sketches are included

Positive semidefinite matrices: Nyström Sketch

```
\hat{A} = NystromSketch(A, k, r)
```

Symmetric matrices: Eigen Sketch

 $\hat{A} = EigenSketch(A, k, r)$

General matrices: Randomized SVD

 $\hat{A} = RandomizedSVD(A, k, r; q=10)$

Implementation: RandomizedPreconditioners.jl

These sketches come with several utilities including

Fast multiplication:

 $\hat{A} = NystromSketch(A, k, r)$ $\hat{A} * v .== \hat{A}.U * \hat{A}.\Lambda * \hat{A}.U'* v$ $\hat{A} = RandomizedSVD(A, k, r)$ $\hat{A} * v .== \hat{A}.U * \hat{A}.\Lambda * \hat{A}.V' * v$

These sketches come with several utilities including

Fast multiplication:

```
 \hat{A} = NystromSketch (A, k, r) 

\hat{A} * v .== \hat{A}.U * \hat{A}.\Lambda * \hat{A}.U' * v 

\hat{A} = RandomizedSVD (A, k, r) 

\hat{A} * v .== \hat{A}.U * \hat{A}.\Lambda * \hat{A}.V' * v
```

Adaptive sketch size selection:

```
#Doubles sketch size until ||\hat{A} - A|| is small \hat{A} = adaptive_sketch(A, r0, EigenSketch)
```

Implementation: RandomizedPreconditioners.jl

And there's more...

Eigenvalues of PSD matrices:

```
\lambdamax_power = RP.eigmax_power(A)
\lambdamax_lanczos = RP.eigmax_lanczos(A)
\lambdamin_lanczos = RP.eigmin_lanczos(A)
```

And there's more...

Eigenvalues of PSD matrices:

```
\lambdamax_power = RP.eigmax_power(A)
\lambdamax_lanczos = RP.eigmax_lanczos(A)
\lambdamin_lanczos = RP.eigmin_lanczos(A)
```

Different sketch matrices:

$$\begin{split} \Omega &= \text{RP.GaussianTestMatrix}(n, r) \\ Q &= \text{RP.rangefinder}(A, r; \Omega=\Omega) \\ \\ \Omega &= \text{RP.SSFTTestMatrix}(n, r) \\ \hat{A} &= \text{EigenSketch}(A, k, r; \Omega=\Omega) \end{split}$$

Implementation: RandomizedPreconditioners.jl

Check out the docs for RandomizedPreconditioners.jl

Outline

Preconditioning Linear Systems

Implementation: RandomizedPreconditioners.jl

Examples

Back to Optimization

Wrap Up

Examples

CG is faster on regression for small overhead

Ridge regression with $\sim 4.3k$ features (guillermo dataset [Van+13])

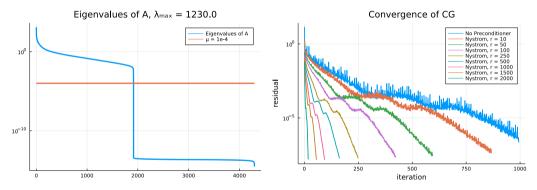


Figure: Spectrum (left) and convergence for various sketch sizes (right)

And it works on large examples too!

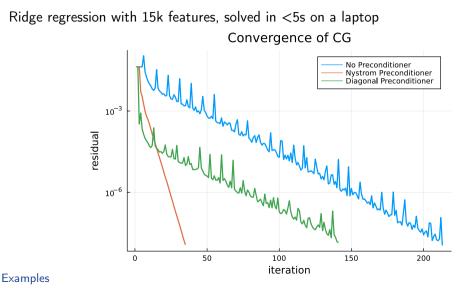


Figure: Nyström PCG vs Jacobi (diagonal) PCG vs vanilla CG

Where to go from here?

Package: RandomizedPreconditioners.jl
 Works with LinearSolve.jl

Theory: Zach's paper on Nyström PCG [FTU21]
 Also check out Martinsson & Tropp survey [MT21]

Extensions: Reach out! (tdiamand@mit.edu)

- Additional test matrices (esp. sparse matrix support)
- Nonsymmetric systems (open research question!)

Outline

Preconditioning Linear Systems

Implementation: RandomizedPreconditioners.jl

Examples

Back to Optimization

Wrap Up

Add this to OSQP in linear system solver

Recall, solving problems of the form

minimize
$$(1/2)x^T P x + q^T x$$

subject to $Ax = z$
 $l \le z \le u$,

> Start by sketching linsys matrix & building preconditioner P_c

• Exploit structure to update P_c without re-sketching when parameters change

– Requires recognizing structure in P and A

Example: bounded least squares

► We solve the problem

where *A* is $25,000 \times 15,000$.

Example: bounded least squares

► We solve the problem

minimize
$$(1/2) ||Ax - b||_2^2$$

subject to $0 \le x \le 1$

where *A* is $25,000 \times 15,000$.

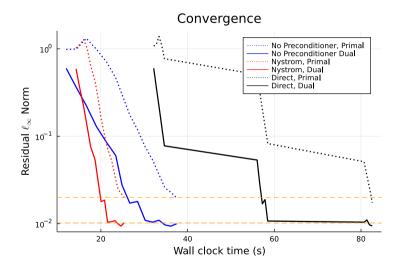
- Linear system matrix becomes $A^T A + (\sigma + \rho)I$
 - We sketch $A^T A$
 - We can easily update ρ , σ without re-sketching

Low overhead yields dramatic speedup

	Direct Solve	No Preconditioning	Nyström Preconditioning
Setup time (total)	31.693s	10.385s	13.687s
Preconditioning time	n/a	n/a	3.735s
Solve time	51.054s	27.313s	11.898s
Total time	82.747s	37.698s	29.320s

Table: ADMM runtime breakdown

Low overhead yields dramatic speedup



Outline

Preconditioning Linear Systems

Implementation: RandomizedPreconditioners.jl

Examples

Back to Optimization

Wrap Up

Solver iteration bottlenecks are often linear algebra operations

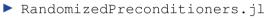
Solver iteration bottlenecks are often linear algebra operations

Randomized techniques often give significant speed ups

- Solver iteration bottlenecks are often linear algebra operations
- Randomized techniques often give significant speed ups
- ▶ Techniques usually incorporated easily & with low overhead for large problems

- Solver iteration bottlenecks are often linear algebra operations
- Randomized techniques often give significant speed ups
- ▶ Techniques usually incorporated easily & with low overhead for large problems
- **Challenge:** parameter tuning for general-purpose solvers

Future Work



- Adding additional test matrices
- Providing better support for sparse matrices
- Adding general preconditioners for nonsymmetric systems

Future Work

RandomizedPreconditioners.jl

- Adding additional test matrices
- Providing better support for sparse matrices
- Adding general preconditioners for nonsymmetric systems
- NysoSQP.jl (forthcoming)
 - JuMP interface (in progress)
 - Recognizing and exploiting structure in the linear system
 - Parameter tuning

References

Zachary Frangella, Joel A Tropp, and Madeleine Udell. "Randomized Nyström Preconditioning". In: *arXiv preprint arXiv:2110.02820* (2021).

PG Martinsson and JA Tropp. "Randomized numerical linear algebra: foundations & algorithms". In: *arXiv preprint arXiv:2002.01387* (2021).

B. Stellato et al. "OSQP: an operator splitting solver for quadratic programs". In: *Mathematical Programming Computation* 12.4 (2020), pp. 637–672. DOI: 10.1007/s12532-020-00179-2. URL: https://doi.org/10.1007/s12532-020-00179-2.

Joaquin Vanschoren et al. "OpenML: Networked Science in Machine Learning". In: SIGKDD Explorations 15.2 (2013), pp. 49–60. DOI: 10.1145/2641190.2641198. URL: http://doi.acm.org/10.1145/2641190.2641198.

Thank you

Packages:

- RandomizedPreconditioners.jl
- NysOSQP.jl (forthcoming)
- Contact: tdiamand@mit.edu

