Faster optimization using RandomizedPreconditioners.jl

Theo Diamandis

Work with Z. Frangella, B. Stellato, M. Udell, and S. Zhao

ICCOPT 2022

Many ways to speed up optimization

- 1. Speed up convergence (fewer iterations)
	- New algorithms
	- Better parameter selection
- 2. Speed up iterations of existing algorithms

3. ...

Many ways to speed up optimization

- 1. Speed up convergence (fewer iterations)
	- New algorithms
	- Better parameter selection
- 2. Speed up iterations of existing algorithms \leftarrow this talk

3. ...

Linear system solves dominate solve time

 \triangleright We consider quadratic programs (QPs) of the form

minimize
$$
(1/2)x^T P x + q^T x
$$

subject to $Ax = z$
 $l \le z \le u$,

Linear system solves dominate solve time

 \triangleright We consider quadratic programs (QPs) of the form

minimize
$$
(1/2)x^T P x + q^T x
$$

subject to $Ax = z$
 $l \le z \le u$,

 \triangleright ADMM (as in OSQP [\[Ste+20\]](#page-50-0)) consists of the following steps:

$$
x^{k+1} \leftarrow (P + \sigma I + \rho A^{T} A)^{-1} (\sigma x^{k} - q + A^{T} (\rho z^{k} - y^{k}))
$$

$$
z^{k+1} \leftarrow \prod_{[l,u]} (Ax^{k+1} + \rho^{-1} y^{k})
$$

$$
y^{k+1} \leftarrow y^{k} + \rho (Ax^{k+1} - z^{k+1})
$$

Linear system solves dominate solve time

 \triangleright We consider quadratic programs (QPs) of the form

minimize
$$
(1/2)x^T P x + q^T x
$$

subject to $Ax = z$
 $l \le z \le u$,

 \triangleright ADMM (as in OSQP [\[Ste+20\]](#page-50-0)) consists of the following steps:

$$
x^{k+1} \leftarrow (P + \sigma I + \rho A^{T} A)^{-1} (\sigma x^{k} - q + A^{T} (\rho z^{k} - y^{k}))
$$

\n
$$
z^{k+1} \leftarrow \prod_{[l,u]} (Ax^{k+1} + \rho^{-1} y^{k})
$$

\n
$$
y^{k+1} \leftarrow y^{k} + \rho (Ax^{k+1} - z^{k+1})
$$

Idea: speed up bottleneck

Faster linear system solves ⇓ Faster ADMM for QPs

Method: construct a good preconditioner

Outline

[Preconditioning Linear Systems](#page-8-0)

Implementation: [RandomizedPreconditioners.jl](#page-20-0)

[Examples](#page-33-0)

[Back to Optimization](#page-37-0)

[Wrap Up](#page-43-0)

[Preconditioning Linear Systems](#page-8-0) 6

We want to quickly solve $Ax = b$

 \triangleright We focus on large systems of the form

 $(A + \mu I)x = b$

where $A \in \mathbb{S}^n_+$ and $\mu \geq 0$.

[Preconditioning Linear Systems](#page-8-0) 7

We want to quickly solve $Ax = b$

 \triangleright We focus on large systems of the form

 $(A + \mu I)x = b$

where $A \in \mathbb{S}^n_+$ and $\mu \geq 0$.

 \blacktriangleright "Large" means a direct solve is not computationally feasible.

We want to quickly solve $Ax = b$

 \triangleright We focus on large systems of the form

 $(A + \mu I)x = b$

where $A \in \mathbb{S}^n_+$ and $\mu \geq 0$.

 \blacktriangleright "Large" means a direct solve is not computationally feasible.

 \blacktriangleright Ideas can be extended to other systems.

We use the conjugate gradient method (CG)

► CG only requires matrix vector products: $v \mapsto Av$

 \triangleright CG converges quickly when

1. The condition number of A is small

2. The eigenvalues of A are clustered

We use the conjugate gradient method (CG)

► CG only requires matrix vector products: $v \mapsto Av$

- \triangleright CG converges quickly when
	- 1. The condition number of A is small
	- 2. The eigenvalues of A are clustered

A preconditioner can make the spectrum of A "nice"

Goal: Find a *preconditioner P* such that:

1. $v \mapsto P^{-1}v$ is easily evaluated

 $2.$ $P^{-1/2}(A + \mu I)P^{-1/2}$ has a "nice" spectrum for <code>CG</code>

Idea: figure out what you want, then approximate

We find the best possible preconditioner and instead of computing it exactly (slow), approximate it (fast).

We precondition using the dominant eigenspace

Ideally, if we had access to the rank-k eigendecomposition $[A]_k = V_k \Lambda_k V_k^T$ and λ_{k+1} we would use

$$
P = \frac{1}{\lambda_{k+1} + \mu} V_k (\Lambda_k + \mu I) V_k^T + I - V_k V_k^T.
$$

- \triangleright P admits an explicit cheap to apply inverse.
- \blacktriangleright Preconditioned system satisfies

$$
\kappa_2(P^{-1/2}A_{\mu}P^{-1/2}) = \frac{\lambda_{k+1} + \mu}{\lambda_n + \mu}.
$$

[Preconditioning Linear Systems](#page-8-0) 11

Approximate a decomposition via the Nystöm Sketch

 \triangleright Computing exact partial eigendecompositions is expensive.

 \triangleright The Nyström sketch gives an approximate eigendecomposition,

$$
\hat{A}_{\mathrm{nys}} = (A\Omega)(\Omega^T A \Omega)^{\dagger} (A\Omega)^T = \hat{V} \hat{\Lambda} \hat{V}^T.
$$

- \blacktriangleright $\Omega \in \mathbb{R}^{n \times k}$ is a random test matrix
	- A common choice is a standard normal Gaussian matrix.

The Nystöm Sketch comes from a best fit problem

 \blacktriangleright The Nyström sketch solves the optimization problem,

$$
\hat{A}_{\mathrm{nys}} = \underset{\mathrm{range}(\hat{A}) \subset \mathrm{range}(A\Omega)}{\mathrm{argmin}} \|A - \hat{A}\|_F^2.
$$

[Preconditioning Linear Systems](#page-8-0) 13

And sketching works well if the spectrum decays [\[FTU21\]](#page-50-1)

Approximation error depends on tail-eigenvalues¹:

$$
\mathbb{E} \|A - \hat{A}_r\| \leq 3\lambda_r + \frac{4e^2}{r} \sum_{j=r}^n \lambda_j
$$

System is well-conditioned in expectation (if r is large enough):

$$
\mathbb{E}\left[\kappa\left(P^{-1/2}(A+\mu I)P^{-1/2}\right)\right]<28.
$$

 1 See [\[FTU21\]](#page-50-1) for a more refined bound **[Preconditioning Linear Systems](#page-8-0)** 14

Outline

[Preconditioning Linear Systems](#page-8-0)

Implementation: [RandomizedPreconditioners.jl](#page-20-0)

[Examples](#page-33-0)

[Back to Optimization](#page-37-0)

[Wrap Up](#page-43-0)

Implementation: [RandomizedPreconditioners.jl](#page-20-0) 15

Preconditioners can be constructed easily

 \blacktriangleright It only takes two lines of code!

using RandomizedPreconditioners Anys = NystromSketch(A, k, r) $P = NystromPreconditioner(Anys, \mu)$

Preconditioners can be constructed easily

 \blacktriangleright It only takes two lines of code!

```
using RandomizedPreconditioners
Anys = NystromSketch(A, k, r)
 P = NystromPreconditioner(Anys, <math>\mu</math>)
```

```
And we can get P^{-1} as well:
```
 σ Pinv = NystromPreconditionerInverse(Anys, μ)

Implementation: [RandomizedPreconditioners.jl](#page-20-0) 16

Preconditioners have efficient operations for solvers

- \triangleright We use multiple dispatch to implement efficient
	- $-$ ldiv! for P and
	- mul! for Pinv

Preconditioners have efficient operations for solvers

- \triangleright We use multiple dispatch to implement efficient
	- $-$ ldiv! for P and
	- $-$ mul! for Piny
- \triangleright These preconditioners can be easily passed to interative solvers:

```
using Krylov
x, stats = cq(A+\mu*T, b; M=PinV)
```
using IterativeSolvers $x, ch = cq(ATA, b; Pl = P, loq=true)$

Implementation: [RandomizedPreconditioners.jl](#page-20-0) 17

Several sketches are included

 \blacktriangleright Positive semidefinite matrices: Nyström Sketch

 \hat{A} = NystromSketch(A, k, r)

Several sketches are included

Positive semidefinite matrices: Nyström Sketch

 \hat{A} = NystromSketch(A, k, r)

> Symmetric matrices: Eigen Sketch

 $\hat{A} =$ EigenSketch(A, k, r)

Several sketches are included

Positive semidefinite matrices: Nyström Sketch

 \hat{A} = NystromSketch(A, k, r)

In Symmetric matrices: Eigen Sketch

 $\hat{A} =$ EigenSketch(A, k, r)

▶ General matrices: Randomized SVD

 \hat{A} = RandomizedSVD(A, k, r; q=10)

Implementation: [RandomizedPreconditioners.jl](#page-20-0) 18

These sketches come with several utilities including

 \blacktriangleright Fast multiplication:

 \hat{A} = NystromSketch(A, k, r) \hat{A} * v .== \hat{A} , U * \hat{A} , Λ * \hat{A} , U'* v \hat{A} = RandomizedSVD(A , k , r) \hat{A} * v .== \hat{A} . U * \hat{A} . \hat{A} * \hat{A} . V' * v

These sketches come with several utilities including

 \blacktriangleright Fast multiplication:

```
✞ ☎
\hat{A} = NystromSketch(A, k, r)
\hat{A} * v .== \hat{A}, U * \hat{A}, \Lambda * \hat{A}, U'* v
\hat{A} = RandomizedSVD(A, k, r)
 \hat{A} * v .== \hat{A}, U * \hat{A}, \hat{A} * \hat{A}, V' * v
```
 \blacktriangleright Adaptive sketch size selection:

```
\sqrt{\frac{1}{2}} #Doubles sketch size until ||\hat{A} - A|| is small
 \hat{A} = adaptive sketch(A, r0, EigenSketch)
```
Implementation: [RandomizedPreconditioners.jl](#page-20-0) 19

And there's more...

 \blacktriangleright Eigenvalues of PSD matrices:

```
\lambdamax_power = RP.eigmax_power(A)
    \lambdamax lanczos = RP.eigmax lanczos(A)
    λmin_lanczos = RP.eigmin_lanczos(A)
```
And there's more...

 \blacktriangleright Eigenvalues of PSD matrices:

```
✞ ☎
    \lambdamax power = RP.eigmax power(A)
    \lambdamax lanczos = RP.eigmax lanczos(A)
    \lambdamin_lanczos = RP.eigmin_lanczos(A)
```
 \blacktriangleright Different sketch matrices:

 \overline{a} $\overline{$ Ω = RP. GaussianTestMatrix(n, r) $Q = RP$.rangefinder(A, r; $\Omega = \Omega$) Ω = RP.SSFTTestMatrix(n, r) \hat{A} = EigenSketch(A, k, r; $\Omega = \Omega$)

Implementation: [RandomizedPreconditioners.jl](#page-20-0) 20

Check out the docs for RandomizedPreconditioners.jl

Outline

[Preconditioning Linear Systems](#page-8-0)

Implementation: [RandomizedPreconditioners.jl](#page-20-0)

[Examples](#page-33-0)

[Back to Optimization](#page-37-0)

[Wrap Up](#page-43-0)

[Examples](#page-33-0) 22

CG is faster on regression for small overhead

Ridge regression with \sim 4.3k features (guillermo dataset [\[Van+13\]](#page-50-2))

Figure: Spectrum (left) and convergence for various sketch sizes (right)

And it works on large examples too!

Figure: Nyström PCG vs Jacobi (diagonal) PCG vs vanilla CG

Where to go from here?

▶ Package: RandomizedPreconditioners.jl – Works with LinearSolve.jl

 \triangleright Theory: Zach's paper on Nyström PCG [\[FTU21\]](#page-50-1) – Also check out Martinsson & Tropp survey [\[MT21\]](#page-50-3)

Extensions: Reach out! $(t$ diamand@mit.edu)

- Additional test matrices (esp. sparse matrix support)
- Nonsymmetric systems (open research question!)

Outline

[Preconditioning Linear Systems](#page-8-0)

Implementation: [RandomizedPreconditioners.jl](#page-20-0)

[Examples](#page-33-0)

[Back to Optimization](#page-37-0)

[Wrap Up](#page-43-0)

Add this to OSQP in linear system solver

 \blacktriangleright Recall, solving problems of the form

minimize
$$
(1/2)x^T P x + q^T x
$$

subject to $Ax = z$
 $l \le z \le u$,

- Start by sketching linsys matrix & building preconditioner P_c
- Exploit structure to update P_c without re-sketching when parameters change
	- Requires recognizing structure in P and A

Example: bounded least squares

 \blacktriangleright We solve the problem

$$
\begin{array}{ll}\text{minimize} & (1/2) \|Ax - b\|_2^2\\ \text{subject to} & 0 \le x \le 1 \end{array}
$$

where A is $25,000 \times 15,000$.

Example: bounded least squares

 \blacktriangleright We solve the problem

minimize
$$
(1/2)||Ax - b||_2^2
$$

subject to $0 \le x \le 1$

where A is 25, 000 \times 15, 000.

- \blacktriangleright Linear system matrix becomes $A^T A + (\sigma + \rho)B$ – We sketch $A^T A$
	- We can easily update ρ , σ without re-sketching

Low overhead yields dramatic speedup

Table: ADMM runtime breakdown

Low overhead yields dramatic speedup

Outline

[Preconditioning Linear Systems](#page-8-0)

Implementation: [RandomizedPreconditioners.jl](#page-20-0)

[Examples](#page-33-0)

[Back to Optimization](#page-37-0)

[Wrap Up](#page-43-0)

 \triangleright Solver iteration bottlenecks are often linear algebra operations

 \triangleright Solver iteration bottlenecks are often linear algebra operations

 \blacktriangleright Randomized techniques often give significant speed ups

- \triangleright Solver iteration bottlenecks are often linear algebra operations
- \blacktriangleright Randomized techniques often give significant speed ups
- \triangleright Techniques usually incorporated easily & with low overhead for large problems

- \triangleright Solver iteration bottlenecks are often linear algebra operations
- \blacktriangleright Randomized techniques often give significant speed ups
- \triangleright Techniques usually incorporated easily $\&$ with low overhead for large problems
- \triangleright Challenge: parameter tuning for general-purpose solvers

Future Work

▶ RandomizedPreconditioners.jl

- Adding additional test matrices
- Providing better support for sparse matrices
- Adding general preconditioners for nonsymmetric systems

Future Work

▶ RandomizedPreconditioners.jl

- Adding additional test matrices
- Providing better support for sparse matrices
- Adding general preconditioners for nonsymmetric systems
- NysOSQP.jl (forthcoming)
	- JuMP interface (in progress)
	- Recognizing and exploiting structure in the linear system
	- Parameter tuning

References

量

F

F

Zachary Frangella, Joel A Tropp, and Madeleine Udell. "Randomized Nyström Preconditioning". In: arXiv preprint arXiv:2110.02820 (2021).

PG Martinsson and JA Tropp. "Randomized numerical linear algebra: foundations & algorithms". In: arXiv preprint arXiv:2002.01387 (2021).

B. Stellato et al. "OSQP: an operator splitting solver for quadratic programs". In: Mathematical Programming Computation 12.4 (2020), pp. 637–672. DOI: [10.1007/s12532-020-00179-2](https://doi.org/10.1007/s12532-020-00179-2). URL: <https://doi.org/10.1007/s12532-020-00179-2>.

Joaquin Vanschoren et al. "OpenML: Networked Science in Machine Learning". In: SIGKDD Explorations 15.2 (2013), pp. 49–60. DOI: [10.1145/2641190.2641198](https://doi.org/10.1145/2641190.2641198). URL: <http://doi.acm.org/10.1145/2641190.2641198>.

Thank you

Packages:

- RandomizedPreconditioners.jl
- NysOSQP.jl (forthcoming)

