
Faster optimization using
RandomizedPreconditioners.jl

Theo Diamandis

Work with Z. Frangella, B. Stellato, M. Udell, and S. Zhao

ICCOPT 2022

1

Many ways to speed up optimization

1. Speed up convergence (fewer iterations)
– New algorithms
– Better parameter selection

2. Speed up iterations of existing algorithms

3. ...

2

Many ways to speed up optimization

1. Speed up convergence (fewer iterations)
– New algorithms
– Better parameter selection

2. Speed up iterations of existing algorithms ← this talk

3. ...

2

Linear system solves dominate solve time

I We consider quadratic programs (QPs) of the form

minimize (1/2)xTPx + qT x
subject to Ax = z

l ≤ z ≤ u,

I ADMM (as in OSQP [Ste+20]) consists of the following steps:

xk+1 ← (P + σI + ρATA)−1(σxk − q + AT (ρzk − yk))

zk+1 ← Π[l ,u]

(
Axk+1 + ρ−1yk

)
yk+1 ← yk + ρ(Axk+1 − zk+1)

3

Linear system solves dominate solve time

I We consider quadratic programs (QPs) of the form

minimize (1/2)xTPx + qT x
subject to Ax = z

l ≤ z ≤ u,

I ADMM (as in OSQP [Ste+20]) consists of the following steps:

xk+1 ← (P + σI + ρATA)−1(σxk − q + AT (ρzk − yk))

zk+1 ← Π[l ,u]

(
Axk+1 + ρ−1yk

)
yk+1 ← yk + ρ(Axk+1 − zk+1)

3

Linear system solves dominate solve time

I We consider quadratic programs (QPs) of the form

minimize (1/2)xTPx + qT x
subject to Ax = z

l ≤ z ≤ u,

I ADMM (as in OSQP [Ste+20]) consists of the following steps:

xk+1 ← (P + σI + ρATA)−1(σxk − q + AT (ρzk − yk))

zk+1 ← Π[l ,u]

(
Axk+1 + ρ−1yk

)
yk+1 ← yk + ρ(Axk+1 − zk+1)

3

Idea: speed up bottleneck

Faster linear system solves

⇓

Faster ADMM for QPs

4

Method: construct a good preconditioner

Our method

Their method

5

Outline

Preconditioning Linear Systems

Implementation: RandomizedPreconditioners.jl

Examples

Back to Optimization

Wrap Up

Preconditioning Linear Systems 6

We want to quickly solve Ax = b

I We focus on large systems of the form

(A + µI)x = b

where A ∈ Sn+ and µ ≥ 0.

I “Large” means a direct solve is not computationally feasible.

I Ideas can be extended to other systems.

Preconditioning Linear Systems 7

We want to quickly solve Ax = b

I We focus on large systems of the form

(A + µI)x = b

where A ∈ Sn+ and µ ≥ 0.

I “Large” means a direct solve is not computationally feasible.

I Ideas can be extended to other systems.

Preconditioning Linear Systems 7

We want to quickly solve Ax = b

I We focus on large systems of the form

(A + µI)x = b

where A ∈ Sn+ and µ ≥ 0.

I “Large” means a direct solve is not computationally feasible.

I Ideas can be extended to other systems.

Preconditioning Linear Systems 7

We use the conjugate gradient method (CG)

I CG only requires matrix vector products: v 7→ Av

I CG converges quickly when
1. The condition number of A is small
2. The eigenvalues of A are clustered

Figure: Easy for CG Figure: Hard for CG

Preconditioning Linear Systems 8

We use the conjugate gradient method (CG)

I CG only requires matrix vector products: v 7→ Av

I CG converges quickly when
1. The condition number of A is small
2. The eigenvalues of A are clustered

Figure: Easy for CG Figure: Hard for CG

Preconditioning Linear Systems 8

A preconditioner can make the spectrum of A “nice”

Goal: Find a preconditioner P such that:

1. v 7→ P−1v is easily evaluated

2. P−1/2(A + µI)P−1/2 has a “nice” spectrum for CG

Preconditioning Linear Systems 9

Idea: figure out what you want, then approximate

We find the best possible preconditioner and instead of computing it
exactly (slow), approximate it (fast).

Preconditioning Linear Systems 10

We precondition using the dominant eigenspace

I Ideally, if we had access to the rank-k eigendecomposition bAck = VkΛkV
T
k and

λk+1 we would use

P =
1

λk+1 + µ
Vk(Λk + µI)V T

k + I − VkV
T
k .

I P admits an explicit cheap to apply inverse.

I Preconditioned system satisfies

κ2(P−1/2AµP
−1/2) =

λk+1 + µ

λn + µ
.

Preconditioning Linear Systems 11

Approximate a decomposition via the Nystöm Sketch

I Computing exact partial eigendecompositions is expensive.

I The Nyström sketch gives an approximate eigendecomposition,

Ânys = (AΩ)(ΩTAΩ)†(AΩ)T = V̂ Λ̂V̂ T .

I Ω ∈ Rn×k is a random test matrix
– A common choice is a standard normal Gaussian matrix.

Preconditioning Linear Systems 12

The Nystöm Sketch comes from a best fit problem

I The Nyström sketch solves the optimization problem,

Ânys = argmin
range(Â)⊂range(AΩ)

‖A− Â‖2F .

Preconditioning Linear Systems 13

And sketching works well if the spectrum decays [FTU21]

I Approximation error depends on tail-eigenvalues1:

E‖A− Âr‖ ≤ 3λr +
4e2

r

n∑
j=r

λj

I System is well-conditioned in expectation (if r is large enough):

E
[
κ
(
P−1/2(A + µI)P−1/2

)]
< 28.

1See [FTU21] for a more refined bound
Preconditioning Linear Systems 14

Outline

Preconditioning Linear Systems

Implementation: RandomizedPreconditioners.jl

Examples

Back to Optimization

Wrap Up

Implementation: RandomizedPreconditioners.jl 15

Preconditioners can be constructed easily

I It only takes two lines of code!

� �
using RandomizedPreconditioners
Anys = NystromSketch(A, k, r)
P = NystromPreconditioner(Anys, µ)� �

I And we can get P−1 as well:

� �
Pinv = NystromPreconditionerInverse(Anys, µ)� �

Implementation: RandomizedPreconditioners.jl 16

Preconditioners can be constructed easily

I It only takes two lines of code!

� �
using RandomizedPreconditioners
Anys = NystromSketch(A, k, r)
P = NystromPreconditioner(Anys, µ)� �

I And we can get P−1 as well:

� �
Pinv = NystromPreconditionerInverse(Anys, µ)� �

Implementation: RandomizedPreconditioners.jl 16

Preconditioners have efficient operations for solvers

I We use multiple dispatch to implement efficient

– ldiv! for P and

– mul! for Pinv

I These preconditioners can be easily passed to interative solvers:

� �
using Krylov
x, stats = cg(A+µ*I, b; M=Pinv)� �� �
using IterativeSolvers
x, ch = cg(ATA, b; Pl = P, log=true)� �

Implementation: RandomizedPreconditioners.jl 17

Preconditioners have efficient operations for solvers

I We use multiple dispatch to implement efficient

– ldiv! for P and

– mul! for Pinv

I These preconditioners can be easily passed to interative solvers:

� �
using Krylov
x, stats = cg(A+µ*I, b; M=Pinv)� �� �
using IterativeSolvers
x, ch = cg(ATA, b; Pl = P, log=true)� �

Implementation: RandomizedPreconditioners.jl 17

Several sketches are included

I Positive semidefinite matrices: Nyström Sketch

� �
Â = NystromSketch(A, k, r)� �

I Symmetric matrices: Eigen Sketch

� �
Â = EigenSketch(A, k, r)� �

I General matrices: Randomized SVD

� �
Â = RandomizedSVD(A, k, r; q=10)� �

Implementation: RandomizedPreconditioners.jl 18

Several sketches are included

I Positive semidefinite matrices: Nyström Sketch

� �
Â = NystromSketch(A, k, r)� �

I Symmetric matrices: Eigen Sketch

� �
Â = EigenSketch(A, k, r)� �

I General matrices: Randomized SVD

� �
Â = RandomizedSVD(A, k, r; q=10)� �

Implementation: RandomizedPreconditioners.jl 18

Several sketches are included

I Positive semidefinite matrices: Nyström Sketch

� �
Â = NystromSketch(A, k, r)� �

I Symmetric matrices: Eigen Sketch

� �
Â = EigenSketch(A, k, r)� �

I General matrices: Randomized SVD

� �
Â = RandomizedSVD(A, k, r; q=10)� �

Implementation: RandomizedPreconditioners.jl 18

These sketches come with several utilities including

I Fast multiplication:

� �
Â = NystromSketch(A, k, r)
Â * v .== Â.U * Â.Λ * Â.U'* v

Â = RandomizedSVD(A, k, r)
Â * v .== Â.U * Â.Λ * Â.V' * v� �

I Adaptive sketch size selection:

� �
#Doubles sketch size until ||Â - A|| is small
Â = adaptive_sketch(A, r0, EigenSketch)� �

Implementation: RandomizedPreconditioners.jl 19

These sketches come with several utilities including

I Fast multiplication:

� �
Â = NystromSketch(A, k, r)
Â * v .== Â.U * Â.Λ * Â.U'* v

Â = RandomizedSVD(A, k, r)
Â * v .== Â.U * Â.Λ * Â.V' * v� �

I Adaptive sketch size selection:

� �
#Doubles sketch size until ||Â - A|| is small
Â = adaptive_sketch(A, r0, EigenSketch)� �

Implementation: RandomizedPreconditioners.jl 19

And there’s more...

I Eigenvalues of PSD matrices:

� �
λmax_power = RP.eigmax_power(A)
λmax_lanczos = RP.eigmax_lanczos(A)
λmin_lanczos = RP.eigmin_lanczos(A)� �

I Different sketch matrices:

� �
Ω = RP.GaussianTestMatrix(n, r)
Q = RP.rangefinder(A, r; Ω=Ω)

Ω = RP.SSFTTestMatrix(n, r)
Â = EigenSketch(A, k, r; Ω=Ω)� �

Implementation: RandomizedPreconditioners.jl 20

And there’s more...

I Eigenvalues of PSD matrices:

� �
λmax_power = RP.eigmax_power(A)
λmax_lanczos = RP.eigmax_lanczos(A)
λmin_lanczos = RP.eigmin_lanczos(A)� �

I Different sketch matrices:

� �
Ω = RP.GaussianTestMatrix(n, r)
Q = RP.rangefinder(A, r; Ω=Ω)

Ω = RP.SSFTTestMatrix(n, r)
Â = EigenSketch(A, k, r; Ω=Ω)� �

Implementation: RandomizedPreconditioners.jl 20

Check out the docs for RandomizedPreconditioners.jl

Implementation: RandomizedPreconditioners.jl 21

Outline

Preconditioning Linear Systems

Implementation: RandomizedPreconditioners.jl

Examples

Back to Optimization

Wrap Up

Examples 22

CG is faster on regression for small overhead

Ridge regression with ∼ 4.3k features (guillermo dataset [Van+13])

Figure: Spectrum (left) and convergence for various sketch sizes (right)

Examples 23

And it works on large examples too!

Ridge regression with 15k features, solved in <5s on a laptop

Figure: Nyström PCG vs Jacobi (diagonal) PCG vs vanilla CG
Examples 24

Where to go from here?

I Package: RandomizedPreconditioners.jl
– Works with LinearSolve.jl

I Theory: Zach’s paper on Nyström PCG [FTU21]
– Also check out Martinsson & Tropp survey [MT21]

I Extensions: Reach out! (tdiamand@mit.edu)
– Additional test matrices (esp. sparse matrix support)
– Nonsymmetric systems (open research question!)

Examples 25

Outline

Preconditioning Linear Systems

Implementation: RandomizedPreconditioners.jl

Examples

Back to Optimization

Wrap Up

Back to Optimization 26

Add this to OSQP in linear system solver

I Recall, solving problems of the form

minimize (1/2)xTPx + qT x
subject to Ax = z

l ≤ z ≤ u,

I Start by sketching linsys matrix & building preconditioner Pc

I Exploit structure to update Pc without re-sketching when parameters change
– Requires recognizing structure in P and A

Back to Optimization 27

Example: bounded least squares

I We solve the problem

minimize (1/2)‖Ax − b‖22
subject to 0 ≤ x ≤ 1

where A is 25, 000× 15, 000.

I Linear system matrix becomes ATA + (σ + ρ)I

– We sketch ATA

– We can easily update ρ, σ without re-sketching

Back to Optimization 28

Example: bounded least squares

I We solve the problem

minimize (1/2)‖Ax − b‖22
subject to 0 ≤ x ≤ 1

where A is 25, 000× 15, 000.

I Linear system matrix becomes ATA + (σ + ρ)I

– We sketch ATA

– We can easily update ρ, σ without re-sketching

Back to Optimization 28

Low overhead yields dramatic speedup

Direct Solve No Preconditioning Nyström Preconditioning
Setup time (total) 31.693s 10.385s 13.687s
Preconditioning time n/a n/a 3.735s
Solve time 51.054s 27.313s 11.898s
Total time 82.747s 37.698s 29.320s

Table: ADMM runtime breakdown

Back to Optimization 29

Low overhead yields dramatic speedup

Back to Optimization 30

Outline

Preconditioning Linear Systems

Implementation: RandomizedPreconditioners.jl

Examples

Back to Optimization

Wrap Up

Wrap Up 31

Randomized numerical linear algebra = powerful optimization
primitives

I Solver iteration bottlenecks are often linear algebra operations

I Randomized techniques often give significant speed ups

I Techniques usually incorporated easily & with low overhead for large problems

I Challenge: parameter tuning for general-purpose solvers

Wrap Up 32

Randomized numerical linear algebra = powerful optimization
primitives

I Solver iteration bottlenecks are often linear algebra operations

I Randomized techniques often give significant speed ups

I Techniques usually incorporated easily & with low overhead for large problems

I Challenge: parameter tuning for general-purpose solvers

Wrap Up 32

Randomized numerical linear algebra = powerful optimization
primitives

I Solver iteration bottlenecks are often linear algebra operations

I Randomized techniques often give significant speed ups

I Techniques usually incorporated easily & with low overhead for large problems

I Challenge: parameter tuning for general-purpose solvers

Wrap Up 32

Randomized numerical linear algebra = powerful optimization
primitives

I Solver iteration bottlenecks are often linear algebra operations

I Randomized techniques often give significant speed ups

I Techniques usually incorporated easily & with low overhead for large problems

I Challenge: parameter tuning for general-purpose solvers

Wrap Up 32

Future Work

I RandomizedPreconditioners.jl
– Adding additional test matrices
– Providing better support for sparse matrices
– Adding general preconditioners for nonsymmetric systems

I NysOSQP.jl (forthcoming)
– JuMP interface (in progress)
– Recognizing and exploiting structure in the linear system
– Parameter tuning

Wrap Up 33

Future Work

I RandomizedPreconditioners.jl
– Adding additional test matrices
– Providing better support for sparse matrices
– Adding general preconditioners for nonsymmetric systems

I NysOSQP.jl (forthcoming)
– JuMP interface (in progress)
– Recognizing and exploiting structure in the linear system
– Parameter tuning

Wrap Up 33

References

Zachary Frangella, Joel A Tropp, and Madeleine Udell. “Randomized Nyström
Preconditioning”. In: arXiv preprint arXiv:2110.02820 (2021).

PG Martinsson and JA Tropp. “Randomized numerical linear algebra: foundations &
algorithms”. In: arXiv preprint arXiv:2002.01387 (2021).

B. Stellato et al. “OSQP: an operator splitting solver for quadratic programs”. In:
Mathematical Programming Computation 12.4 (2020), pp. 637–672. DOI:
10.1007/s12532-020-00179-2. URL:
https://doi.org/10.1007/s12532-020-00179-2.

Joaquin Vanschoren et al. “OpenML: Networked Science in Machine Learning”. In:
SIGKDD Explorations 15.2 (2013), pp. 49–60. DOI: 10.1145/2641190.2641198.
URL: http://doi.acm.org/10.1145/2641190.2641198.

Wrap Up 34

https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1145/2641190.2641198
http://doi.acm.org/10.1145/2641190.2641198

Thank you

I Packages:
– RandomizedPreconditioners.jl

– NysOSQP.jl (forthcoming)

I Contact: tdiamand@mit.edu

Wrap Up 35

	Preconditioning Linear Systems
	Implementation: RandomizedPreconditioners.jl
	Examples
	Back to Optimization
	Wrap Up
	References

