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Many ways to speed up optimization

1. Speed up convergence (fewer iterations)
– New algorithms
– Better parameter selection

2. Speed up iterations of existing algorithms

3. ...
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Linear system solves dominate solve time

I We consider quadratic programs (QPs) of the form

minimize (1/2)xTPx + qT x
subject to Ax = z

l ≤ z ≤ u,

I ADMM (as in OSQP [Ste+20]) consists of the following steps:

xk+1 ← (P + σI + ρATA)−1(σxk − q + AT (ρzk − yk))

zk+1 ← Π[l ,u]

(
Axk+1 + ρ−1yk

)
yk+1 ← yk + ρ(Axk+1 − zk+1)
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Idea: speed up bottleneck

Faster linear system solves

⇓

Faster ADMM for QPs
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Method: construct a good preconditioner

Our method

Their method
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We want to quickly solve Ax = b

I We focus on large systems of the form

(A + µI )x = b

where A ∈ Sn+ and µ ≥ 0.

I “Large” means a direct solve is not computationally feasible.

I Ideas can be extended to other systems.
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We use the conjugate gradient method (CG)

I CG only requires matrix vector products: v 7→ Av

I CG converges quickly when
1. The condition number of A is small
2. The eigenvalues of A are clustered

Figure: Easy for CG Figure: Hard for CG
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A preconditioner can make the spectrum of A “nice”

Goal: Find a preconditioner P such that:

1. v 7→ P−1v is easily evaluated

2. P−1/2(A + µI )P−1/2 has a “nice” spectrum for CG
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Idea: figure out what you want, then approximate

We find the best possible preconditioner and instead of computing it
exactly (slow), approximate it (fast).
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We precondition using the dominant eigenspace

I Ideally, if we had access to the rank-k eigendecomposition bAck = VkΛkV
T
k and

λk+1 we would use

P =
1

λk+1 + µ
Vk(Λk + µI )V T

k + I − VkV
T
k .

I P admits an explicit cheap to apply inverse.

I Preconditioned system satisfies

κ2(P−1/2AµP
−1/2) =

λk+1 + µ

λn + µ
.
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Approximate a decomposition via the Nystöm Sketch

I Computing exact partial eigendecompositions is expensive.

I The Nyström sketch gives an approximate eigendecomposition,

Ânys = (AΩ)(ΩTAΩ)†(AΩ)T = V̂ Λ̂V̂ T .

I Ω ∈ Rn×k is a random test matrix
– A common choice is a standard normal Gaussian matrix.
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The Nystöm Sketch comes from a best fit problem

I The Nyström sketch solves the optimization problem,

Ânys = argmin
range(Â)⊂range(AΩ)

‖A− Â‖2F .
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And sketching works well if the spectrum decays [FTU21]

I Approximation error depends on tail-eigenvalues1:

E‖A− Âr‖ ≤ 3λr +
4e2

r

n∑
j=r

λj

I System is well-conditioned in expectation (if r is large enough):

E
[
κ
(
P−1/2(A + µI )P−1/2

)]
< 28.

1See [FTU21] for a more refined bound
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Preconditioners can be constructed easily

I It only takes two lines of code!

� �
using RandomizedPreconditioners
Anys = NystromSketch(A, k, r)
P = NystromPreconditioner(Anys, µ)� �

I And we can get P−1 as well:

� �
Pinv = NystromPreconditionerInverse(Anys, µ)� �
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Preconditioners have efficient operations for solvers

I We use multiple dispatch to implement efficient

– ldiv! for P and

– mul! for Pinv

I These preconditioners can be easily passed to interative solvers:

� �
using Krylov
x, stats = cg(A+µ*I, b; M=Pinv)� �� �
using IterativeSolvers
x, ch = cg(ATA, b; Pl = P, log=true)� �
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Several sketches are included

I Positive semidefinite matrices: Nyström Sketch

� �
Â = NystromSketch(A, k, r)� �

I Symmetric matrices: Eigen Sketch

� �
Â = EigenSketch(A, k, r)� �

I General matrices: Randomized SVD

� �
Â = RandomizedSVD(A, k, r; q=10)� �
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These sketches come with several utilities including

I Fast multiplication:

� �
Â = NystromSketch(A, k, r)
Â * v .== Â.U * Â.Λ * Â.U'* v

Â = RandomizedSVD(A, k, r)
Â * v .== Â.U * Â.Λ * Â.V' * v� �

I Adaptive sketch size selection:

� �
#Doubles sketch size until ||Â - A|| is small
Â = adaptive_sketch(A, r0, EigenSketch)� �
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And there’s more...

I Eigenvalues of PSD matrices:

� �
λmax_power = RP.eigmax_power(A)
λmax_lanczos = RP.eigmax_lanczos(A)
λmin_lanczos = RP.eigmin_lanczos(A)� �

I Different sketch matrices:

� �
Ω = RP.GaussianTestMatrix(n, r)
Q = RP.rangefinder(A, r; Ω=Ω)

Ω = RP.SSFTTestMatrix(n, r)
Â = EigenSketch(A, k, r; Ω=Ω)� �
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Check out the docs for RandomizedPreconditioners.jl
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CG is faster on regression for small overhead

Ridge regression with ∼ 4.3k features (guillermo dataset [Van+13])

Figure: Spectrum (left) and convergence for various sketch sizes (right)
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And it works on large examples too!

Ridge regression with 15k features, solved in <5s on a laptop

Figure: Nyström PCG vs Jacobi (diagonal) PCG vs vanilla CG
Examples 24



Where to go from here?

I Package: RandomizedPreconditioners.jl
– Works with LinearSolve.jl

I Theory: Zach’s paper on Nyström PCG [FTU21]
– Also check out Martinsson & Tropp survey [MT21]

I Extensions: Reach out! (tdiamand@mit.edu)
– Additional test matrices (esp. sparse matrix support)
– Nonsymmetric systems (open research question!)
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Add this to OSQP in linear system solver

I Recall, solving problems of the form

minimize (1/2)xTPx + qT x
subject to Ax = z

l ≤ z ≤ u,

I Start by sketching linsys matrix & building preconditioner Pc

I Exploit structure to update Pc without re-sketching when parameters change
– Requires recognizing structure in P and A

Back to Optimization 27



Example: bounded least squares

I We solve the problem

minimize (1/2)‖Ax − b‖22
subject to 0 ≤ x ≤ 1

where A is 25, 000× 15, 000.

I Linear system matrix becomes ATA + (σ + ρ)I

– We sketch ATA

– We can easily update ρ, σ without re-sketching

Back to Optimization 28
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Low overhead yields dramatic speedup

Direct Solve No Preconditioning Nyström Preconditioning
Setup time (total) 31.693s 10.385s 13.687s
Preconditioning time n/a n/a 3.735s
Solve time 51.054s 27.313s 11.898s
Total time 82.747s 37.698s 29.320s

Table: ADMM runtime breakdown
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Low overhead yields dramatic speedup
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Randomized numerical linear algebra = powerful optimization
primitives

I Solver iteration bottlenecks are often linear algebra operations

I Randomized techniques often give significant speed ups

I Techniques usually incorporated easily & with low overhead for large problems

I Challenge: parameter tuning for general-purpose solvers

Wrap Up 32
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Future Work

I RandomizedPreconditioners.jl
– Adding additional test matrices
– Providing better support for sparse matrices
– Adding general preconditioners for nonsymmetric systems

I NysOSQP.jl (forthcoming)
– JuMP interface (in progress)
– Recognizing and exploiting structure in the linear system
– Parameter tuning
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Thank you

I Packages:
– RandomizedPreconditioners.jl

– NysOSQP.jl (forthcoming)

I Contact: tdiamand@mit.edu
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