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Speedup x = A\b with this one easy trick

Our method

Their method
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We want to quickly solve Ax = b

▶ We focus on large systems of the form

(A+ µI )x = b

where A ∈ Sn+ and µ ≥ 0.

▶ “Large” means a direct solve is not computationally feasible.

▶ Ideas can be extended to other systems.
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We use the conjugate gradient method (CG)

▶ CG only requires matrix vector products: v 7→ Av

▶ CG converges quickly when
1. The condition number of A is small
2. The eigenvalues of A are clustered

Figure: Easy for CG Figure: Hard for CG
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A preconditioner can make the spectrum of A “nice”

Goal: Find a preconditioner P such that:

1. v 7→ P−1v is easily evaluated

2. P−1/2(A+ µI )P−1/2 has a “nice" spectrum for CG
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Idea: figure out what you want, then approximate

We find the best possible preconditioner and instead
of computing it exactly (slow), approximate it (fast).

Preconditioning Linear Systems 7



We precondition using the dominant eigenspace

▶ Ideally, if we had access to the rank-k eigendecomposition
⌊A⌋k = VkΛkV

T
k and λk+1 we would use

P =
1

λk+1 + µ
Vk(Λk + µI )V T

k + I − VkV
T
k .

▶ P admits an explicit cheap to apply inverse.

▶ Preconditioned system satisfies

κ2(P
−1/2AµP

−1/2) =
λk+1 + µ

λn + µ
.
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Approximate a decomposition via the Nystöm Sketch

▶ Computing exact partial eigendecompositions is expensive.

▶ The Nyström sketch gives an approximate eigendecomposition,

Ânys = (AΩ)(ΩTAΩ)†(AΩ)T = V̂ Λ̂V̂ T .

▶ Ω ∈ Rn×k is a random test matrix
– A common choice is a standard normal Gaussian matrix.

Preconditioning Linear Systems 9



The Nystöm Sketch comes from a best fit problem

▶ The Nyström sketch solves the optimization problem,

Ânys = argmin
range(Â)⊂range(AΩ)

∥A− Â∥2
F .
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And sketching works well if the spectrum decays

▶ Approximation error depends on tail-eigenvalues [Tro+17]:

E∥A− Âr∥ ≤ λr+1 +
r

k−r+1

∑
j>r

λj .

▶ System is well-conditioned in expectation [FTU21]:

E
[
κ
(
P−1/2(A+ µI )P−1/2

)]
< 28.
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Preconditioners can be constructed easily

▶ It only takes two lines of code!

� �
using RandomizedPreconditioners
Anys = NystromSketch(A, k, r)
P = NystromPreconditioner(Anys, µ)� �

▶ And we can get P−1 as well:

� �
Pinv = NystromPreconditionerInverse(Anys, µ)� �
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Preconditioners have efficient operations for solvers

▶ We use multiple dispatch to implement efficient

– ldiv! for P and

– mul! for Pinv

▶ These preconditioners can be easily passed to interative solvers:

� �
using Krylov
x, stats = cg(A+µ*I, b; M=Pinv)� �� �
using IterativeSolvers
x, ch = cg(ATA, b; Pl = P, log=true)� �
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Several sketches are included

▶ Positive semidefinite matrices: Nyström Sketch

� �
Â = NystromSketch(A, k, r)� �

▶ Symmetric matrices: Eigen Sketch

� �
Â = EigenSketch(A, k, r)� �

▶ General matrices: Randomized SVD

� �
Â = RandomizedSVD(A, k, r; q=10)� �
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These sketches come with several utilities including

▶ Fast multiplication:

� �
Â = NystromSketch(A, k, r)
Â * v .== Â.U * Â.Λ * Â.U'* v

Â = RandomizedSVD(A, k, r)
Â * v .== Â.U * Â.Λ * Â.V' * v� �

▶ Adaptive sketch size selection:

� �
#Doubles sketch size until ||Â - A|| is small
Â = adaptive_sketch(A, r0, EigenSketch)� �

Implementation: RandomizedPreconditioners.jl 16



These sketches come with several utilities including

▶ Fast multiplication:

� �
Â = NystromSketch(A, k, r)
Â * v .== Â.U * Â.Λ * Â.U'* v

Â = RandomizedSVD(A, k, r)
Â * v .== Â.U * Â.Λ * Â.V' * v� �

▶ Adaptive sketch size selection:

� �
#Doubles sketch size until ||Â - A|| is small
Â = adaptive_sketch(A, r0, EigenSketch)� �

Implementation: RandomizedPreconditioners.jl 16



Outline

Preconditioning Linear Systems

Implementation: RandomizedPreconditioners.jl

Examples

Future Directions

Examples 17



CG is faster on regression for small overhead

Ridge regression with ∼ 4.3k features (guillermo dataset, OpenML)

Figure: Spectrum (left) and convergence for various sketch sizes (right)
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And it works on large examples too!

Ridge regression with 15k features, solved in <5s on a laptop

Figure: Nyström PCG vs Jacobi (diagonal) PCG vs vanilla CG
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Where to go from here?

▶ To use: RandomizedPreconditioners.jl
– Works with LinearSolve.jl

▶ To learn: Zach’s paper on Nyström PCG [FTU21]
– Also check out Martinsson & Tropp survey [MT21]
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Future Work

▶ Adding additional test matrices
– e.g., Subsampled Scrambled Fourier Transform
– Providing better support for sparse matrices

▶ Adding general preconditioners for nonsymmetric systems
– This is an open research question

▶ Performance and robustness

▶ Applications!
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Thank you

▶ Package: RandomizedPreconditioners.jl

▶ Contact: tdiamand@mit.edu, zjf4@cornell.edu
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