Speeding up $x = A/b$ with RandomizedPreconditioners.jl

Theo Diamandis, Zachary Frangella

March 2022

Speedup $x = A \ b$ with this one easy trick

Outline

[Preconditioning Linear Systems](#page-2-0)

Implementation: [RandomizedPreconditioners.jl](#page-14-0)

[Examples](#page-24-0)

[Future Directions](#page-28-0)

[Preconditioning Linear Systems](#page-2-0) 3

We want to quickly solve $Ax = b$

▶ We focus on large systems of the form

 $(A + \mu I)x = b$

where $A \in \mathbb{S}^n_+$ and $\mu \geq 0$.

[Preconditioning Linear Systems](#page-2-0) 4

We want to quickly solve $Ax = b$

▶ We focus on large systems of the form

 $(A + \mu I)x = b$

where $A \in \mathbb{S}^n_+$ and $\mu \geq 0$.

▶ "Large" means a direct solve is not computationally feasible.

We want to quickly solve $Ax = b$

▶ We focus on large systems of the form

 $(A + \mu I)x = b$

where $A \in \mathbb{S}^n_+$ and $\mu \geq 0$.

▶ "Large" means a direct solve is not computationally feasible.

▶ Ideas can be extended to other systems.

We use the conjugate gradient method (CG)

▶ CG only requires matrix vector products: $v \mapsto Av$

- \triangleright CG converges quickly when
	- 1. The condition number of A is small
	- 2. The eigenvalues of A are clustered

We use the conjugate gradient method (CG)

▶ CG only requires matrix vector products: $v \mapsto Av$

- \triangleright CG converges quickly when
	- 1. The condition number of A is small
	- 2. The eigenvalues of A are clustered

[Preconditioning Linear Systems](#page-2-0) 5 and the state of the

A preconditioner can make the spectrum of A "nice"

Goal: Find a *preconditioner P* such that:

1.
$$
v \mapsto P^{-1}v
$$
 is easily evaluated

2.
$$
P^{-1/2}(A + \mu I)P^{-1/2}
$$
 has a "nice" spectrum for CG

[Preconditioning Linear Systems](#page-2-0) 6

Idea: figure out what you want, then approximate

We find the best possible preconditioner and instead of computing it exactly (slow), approximate it (fast).

[Preconditioning Linear Systems](#page-2-0) 7

We precondition using the dominant eigenspace

 \blacktriangleright Ideally, if we had access to the rank-k eigendecomposition $\lfloor A \rfloor_k = V_k \Lambda_k V_k^{\mathsf{T}}$ and λ_{k+1} we would use

$$
P = \frac{1}{\lambda_{k+1} + \mu} V_k (\Lambda_k + \mu I) V_k^T + I - V_k V_k^T.
$$

- \triangleright P admits an explicit cheap to apply inverse.
- ▶ Preconditioned system satisfies

$$
\kappa_2(P^{-1/2}A_{\mu}P^{-1/2}) = \frac{\lambda_{k+1} + \mu}{\lambda_n + \mu}.
$$

[Preconditioning Linear Systems](#page-2-0) 88 and the state of th

Approximate a decomposition via the Nystöm Sketch

- ▶ Computing exact partial eigendecompositions is expensive.
- \triangleright The Nyström sketch gives an approximate eigendecomposition,

$$
\hat{A}_{\mathrm{nys}} = (A\Omega)(\Omega^T A \Omega)^{\dagger} (A\Omega)^T = \hat{V} \hat{\Lambda} \hat{V}^T.
$$

 $\blacktriangleright \Omega \in \mathbb{R}^{n \times k}$ is a random test matrix – A common choice is a standard normal Gaussian matrix.

The Nystöm Sketch comes from a best fit problem

 \blacktriangleright The Nyström sketch solves the optimization problem,

$$
\hat{A}_{\mathrm{nys}} = \underset{\mathrm{range}(\hat{A}) \subset \mathrm{range}(A\Omega)}{\mathrm{argmin}} \|A - \hat{A}\|_F^2.
$$

[Preconditioning Linear Systems](#page-2-0) 10

And sketching works well if the spectrum decays

▶ Approximation error depends on tail-eigenvalues $[Tr₀+17]$:

$$
\mathbb{E} \|A - \hat{A}_r\| \leq \lambda_{r+1} + \frac{r}{k-r+1} \sum_{j>r} \lambda_j.
$$

▶ System is well-conditioned in expectation [\[FTU21\]](#page-30-1):

$$
\mathbb{E}\left[\kappa\left(P^{-1/2}(A+\mu I)P^{-1/2}\right)\right]<28.
$$

[Preconditioning Linear Systems](#page-2-0) 11 and 2008 12 and 2008

Outline

[Preconditioning Linear Systems](#page-2-0)

Implementation: [RandomizedPreconditioners.jl](#page-14-0)

[Examples](#page-24-0)

[Future Directions](#page-28-0)

Preconditioners can be constructed easily

▶ It only takes two lines of code!

using RandomizedPreconditioners Anys = NystromSketch(A, k, r) $P = NystromPreconditioner(Anys, μ)$

Preconditioners can be constructed easily

 \blacktriangleright It only takes two lines of code!

using RandomizedPreconditioners Anys = NystromSketch(A, k, r) $P = NystromPreconditioner(Anys, μ)$

And we can get P^{-1} as well:

 σ Pinv = NystromPreconditionerInverse(Anys, μ)

Preconditioners have efficient operations for solvers

- \triangleright We use multiple dispatch to implement efficient
	- ldiv! for P and
	- $-$ mul! for Piny

Preconditioners have efficient operations for solvers

- \triangleright We use multiple dispatch to implement efficient
	- $-$ ldiv! for P and
	- $-$ mul! for Piny

 \triangleright These preconditioners can be easily passed to interative solvers:

```
using Krylov
x, stats = cg(A+\mu*I, b; M=Pinv)
```

```
using IterativeSolvers
x, ch = cq(ATA, b; Pl = P, loq=true)
```
Several sketches are included

▶ Positive semidefinite matrices: Nyström Sketch

 \hat{A} = NystromSketch(A, k, r)

Several sketches are included

▶ Positive semidefinite matrices: Nyström Sketch

 \hat{A} = NystromSketch(A, k, r)

 \hat{A} = EigenSketch(A, k, r)

Several sketches are included

▶ Positive semidefinite matrices: Nyström Sketch

 \hat{A} = NystromSketch(A, k, r)


```
\hat{A} = EigenSketch(A, k, r)
```
▶ General matrices: Randomized SVD

 $\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right)$ \hat{A} = RandomizedSVD(A, k, r; q=10)

These sketches come with several utilities including

 \blacktriangleright Fast multiplication:

 θ \hat{A} = NystromSketch(A, k, r) \hat{A} * v .== \hat{A} . U * \hat{A} . Λ * \hat{A} . U'* v \hat{A} = RandomizedSVD(A , k , r) \hat{A} * v .== \hat{A} , U * \hat{A} , Λ * \hat{A} , V' * v

These sketches come with several utilities including

 \blacktriangleright Fast multiplication:

 θ \hat{A} = NystromSketch(A, k, r) \hat{A} * v .== \hat{A} . U * \hat{A} . Λ * \hat{A} . U'* v \hat{A} = RandomizedSVD(A, k, r) \hat{A} * v .== \hat{A} , U * \hat{A} , Λ * \hat{A} , V' * v

▶ Adaptive sketch size selection:

✞ ☎ #Doubles sketch size until ||Â - A|| is small \hat{A} = adaptive_sketch(A, r0, EigenSketch)

Outline

[Preconditioning Linear Systems](#page-2-0)

Implementation: [RandomizedPreconditioners.jl](#page-14-0)

[Examples](#page-24-0)

[Future Directions](#page-28-0)

[Examples](#page-24-0) 17

CG is faster on regression for small overhead

Ridge regression with \sim 4.3k features (guillermo dataset, OpenML)

Figure: Spectrum (left) and convergence for various sketch sizes (right)

[Examples](#page-24-0) **Examples** 28 and 28 and

And it works on large examples too!

Ridge regression with 15 k features, solved in \lt 5s on a laptop

Figure: Nyström PCG vs Jacobi (diagonal) PCG vs vanilla CG

Where to go from here?

▶ To learn: Zach's paper on Nyström PCG [\[FTU21\]](#page-30-1) – Also check out Martinsson & Tropp survey [\[MT21\]](#page-30-2)

[Examples](#page-24-0) 20

Outline

[Preconditioning Linear Systems](#page-2-0)

Implementation: [RandomizedPreconditioners.jl](#page-14-0)

[Examples](#page-24-0)

[Future Directions](#page-28-0)

[Future Directions](#page-28-0) 21

Future Work

▶ Adding additional test matrices

- e.g., Subsampled Scrambled Fourier Transform
- Providing better support for sparse matrices
- ▶ Adding general preconditioners for nonsymmetric systems
	- This is an open research question
- ▶ Performance and robustness
- ▶ Applications!

[Future Directions](#page-28-0) 22

References

[FTU21] Zachary Frangella, Joel A Tropp, and Madeleine Udell. "Randomized Nyström Preconditioning". In: arXiv preprint arXiv:2110.02820 (2021).

[MT21] PG Martinsson and JA Tropp. "Randomized numerical linear algebra: foundations & algorithms". In: arXiv preprint arXiv:2002.01387 (2021).

[Tro+17] Joel A Tropp et al. "Practical sketching algorithms for low-rank matrix approximation". In: SIAM Journal on Matrix Analysis and Applications 38.4 (2017), pp. 1454–1485.

Thank you

▶ Package: RandomizedPreconditioners.jl

▶ Contact: tdiamand@mit.edu, zjf4@cornell.edu

[Future Directions](#page-30-3) 24