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Speedup x = A\b with this one easy trick
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We want to quickly solve Ax = b

» We focus on large systems of the form
(A+pul)x=0>b

where A € S and p > 0.
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We want to quickly solve Ax = b

» We focus on large systems of the form
(A+pul)x=0>b
where A € S and p > 0.
> “Large” means a direct solve is not computationally feasible.

> |deas can be extended to other systems.
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We use the conjugate gradient method (CG)

» CG only requires matrix vector products: v — Av

» CG converges quickly when

1. The condition number of A is small
2. The eigenvalues of A are clustered
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» CG only requires matrix vector products: v — Av

» CG converges quickly when

1. The condition number of A is small
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A preconditioner can make the spectrum of A “nice”

Goal: Find a preconditioner P such that:

1. v — P71y is easily evaluated

2. P~Y2(A+ ul)P~1/2 has a “nice" spectrum for CG
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Idea: figure out what you want, then approximate

We find the best possible preconditioner and instead
of computing it exactly (slow), approximate it (fast).
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We precondition using the dominant eigenspace

> |deally, if we had access to the rank-k eigendecomposition
Ak = Vil VkT and Axy1 we would use

1

= ——Vi(A + V] +1 - vV
/\k+1+uk(k ul)Vy Ik Vi
» P admits an explicit cheap to apply inverse.

» Preconditioned system satisfies

Aky1+ p

ro(P~Y2A,P7Y2) = Fua——
nTH
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Approximate a decomposition via the Nystom Sketch

» Computing exact partial eigendecompositions is expensive.
» The Nystrom sketch gives an approximate eigendecomposition,
Augs = (AQ)(QTAQ)T(AQ)T = VAVT.

» Q € R"™k is a random test matrix
— A common choice is a standard normal Gaussian matrix.
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The Nystom Sketch comes from a best fit problem

» The Nystrom sketch solves the optimization problem,

Apys = argmin |A— Alz.
range(A)Crange(AQ)
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And sketching works well if the spectrum decays

» Approximation error depends on tail-eigenvalues [Tro+17]:

E|A = Al < A1+ =57 DA

j>r
> System is well-conditioned in expectation [FTU21]:

E [m (P—1/2(A + u/)P—1/2)} <28,
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Implementation: RandomizedPreconditioners. jl

Implementation: RandomizedPreconditioners. jl

12



Preconditioners can be constructed easily

> |t only takes two lines of codel!

using RandomizedPreconditioners
Anys = NystromSketch (A, k, r)
P = NystromPreconditioner (Anys, )
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Preconditioners can be constructed easily

> |t only takes two lines of codel!

using RandomizedPreconditioners
Anys = NystromSketch (A, k, r)
P = NystromPreconditioner (Anys, )

» And we can get P71 as well:

Pinv = NystromPreconditionerInverse (Anys, )

Implementation: RandomizedPreconditioners. jl
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Preconditioners have efficient operations for solvers

» We use multiple dispatch to implement efficient
— 1div! for P and

— mul! for Pinv

Implementation: RandomizedPreconditioners.jl
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Preconditioners have efficient operations for solvers

» We use multiple dispatch to implement efficient
— 1div! for P and

— mul! for Pinv

» These preconditioners can be easily passed to interative solvers:

using Krylov
x, stats = cg(A+uxI, b; M=Pinv)

using IterativeSolvers
x, ch = cg(ATA, b; Pl = P, log=true)

Implementation: RandomizedPreconditioners.jl 14



Several sketches are included

» Positive semidefinite matrices: Nystrom Sketch

A = NystromSketch (A, k, r)
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Several sketches are included

» Positive semidefinite matrices: Nystrom Sketch

A = NystromSketch (A, k, r)

» Symmetric matrices: Eigen Sketch

A = EigenSketch (A, k, r)

» General matrices: Randomized SVD

A = RandomizedSVD (A, k, r; g=10)

Implementation: RandomizedPreconditioners.jl



These sketches come with several utilities including

» Fast multiplication:

= NystromSketch (A, k, r)
x v .== A.U » ALAN » A.U'*x v

>
|

= RandomizedSVD (A, k, r)
x v .== A.U * ALAN » A.V' %« v

T
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These sketches come with several utilities including

» Fast multiplication:

= NystromSketch (A, k, r)
x v .== A.U » ALAN » A.U'*x v

>

= RandomizedSVD (A, k, r)
x v .== A.U * ALAN » A.V' %« v

T

» Adaptive sketch size selection:

#Doubles sketch size until ||A - A|| is small
A = adaptive_sketch (A, r0, EigenSketch)

Implementation: RandomizedPreconditioners. jl
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CG is faster on regression for small overhead

Ridge regression with ~ 4.3k features (guillermo dataset, OpenML)

Eigenvalues of A, Amax = 1230.0 Convergence of CG
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Figure: Spectrum (left) and convergence for various sketch sizes (right)
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And it works on large examples too!

Ridge regression with 15k features, solved in <5s on a laptop
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Figure: Nystrom PCG vs Jacobi (diagonal) PCG vs vanilla CG
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Where to go from here?

» To use: RandomizedPreconditioners. jl
— Works with LinearSolve. j1

» To learn: Zach's paper on Nystrom PCG [FTU21]
— Also check out Martinsson & Tropp survey [MT21]
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Future Directions
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Future Work

» Adding additional test matrices

— e.g., Subsampled Scrambled Fourier Transform
— Providing better support for sparse matrices

» Adding general preconditioners for nonsymmetric systems
— This is an open research question

» Performance and robustness

> Applications!

Future Directions
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Thank you

» Package: RandomizedPreconditioners. jl

» Contact: tdiamand@mit.edu, zjf4@cornell.edu
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