Speeding up x = A\b with
RandomizedPreconditioners |l

Theo Diamandis, Zachary Frangella

March 2022



Speedup x = A\b with this one easy trick

Convergence of CG

No Preconditioner
~— Nystrom Preconditioner
Diagonal Preconditioner
103+
© b
E Their method
0
<
10°°
Our method

o 50 100 150
iteration

200



Qutline

Preconditioning Linear Systems

Preconditioning Linear Systems



We want to quickly solve Ax = b

» We focus on large systems of the form
(A+pul)x=0>b

where A € S and p > 0.

Preconditioning Linear Systems



We want to quickly solve Ax = b

» We focus on large systems of the form
(A+pul)x=0>b
where A € S and p > 0.

> “Large” means a direct solve is not computationally feasible.

Preconditioning Linear Systems



We want to quickly solve Ax = b

» We focus on large systems of the form
(A+pul)x=0>b
where A € S and p > 0.
> “Large” means a direct solve is not computationally feasible.

> |deas can be extended to other systems.

Preconditioning Linear Systems



We use the conjugate gradient method (CG)

» CG only requires matrix vector products: v — Av

» CG converges quickly when

1. The condition number of A is small
2. The eigenvalues of A are clustered

Preconditioning Linear Systems



We use the conjugate gradient method (CG)

» CG only requires matrix vector products: v — Av

» CG converges quickly when

1. The condition number of A is small
2. The eigenvalues of A are clustered

Figure: Easy for CG Figure: Hard for CG

Preconditioning Linear Systems



A preconditioner can make the spectrum of A “nice”

Goal: Find a preconditioner P such that:

1. v — P71y is easily evaluated

2. P~Y2(A+ ul)P~1/2 has a “nice" spectrum for CG

Preconditioning Linear Systems



Idea: figure out what you want, then approximate

We find the best possible preconditioner and instead
of computing it exactly (slow), approximate it (fast).

Preconditioning Linear Systems



We precondition using the dominant eigenspace

> |deally, if we had access to the rank-k eigendecomposition
Ak = Vil VkT and Axy1 we would use

1

= ——Vi(A + V] +1 - vV
/\k+1+uk(k ul)Vy Ik Vi
» P admits an explicit cheap to apply inverse.

» Preconditioned system satisfies

Aky1+ p

ro(P~Y2A,P7Y2) = Fua——
nTH

Preconditioning Linear Systems



Approximate a decomposition via the Nystom Sketch

» Computing exact partial eigendecompositions is expensive.
» The Nystrom sketch gives an approximate eigendecomposition,
Augs = (AQ)(QTAQ)T(AQ)T = VAVT.

» Q € R"™k is a random test matrix
— A common choice is a standard normal Gaussian matrix.

Preconditioning Linear Systems



The Nystom Sketch comes from a best fit problem

» The Nystrom sketch solves the optimization problem,

Apys = argmin |A— Alz.
range(A)Crange(AQ)

Preconditioning Linear Systems

10



And sketching works well if the spectrum decays

» Approximation error depends on tail-eigenvalues [Tro+17]:

E|A = Al < A1+ =57 DA

j>r
> System is well-conditioned in expectation [FTU21]:

E [m (P—1/2(A + u/)P—1/2)} <28,

Preconditioning Linear Systems 11



Qutline

Implementation: RandomizedPreconditioners. jl

Implementation: RandomizedPreconditioners. jl

12



Preconditioners can be constructed easily

> |t only takes two lines of codel!

using RandomizedPreconditioners
Anys = NystromSketch (A, k, r)
P = NystromPreconditioner (Anys, )

Implementation: RandomizedPreconditioners. jl 13



Preconditioners can be constructed easily

> |t only takes two lines of codel!

using RandomizedPreconditioners
Anys = NystromSketch (A, k, r)
P = NystromPreconditioner (Anys, )

» And we can get P71 as well:

Pinv = NystromPreconditionerInverse (Anys, )

Implementation: RandomizedPreconditioners. jl

13



Preconditioners have efficient operations for solvers

» We use multiple dispatch to implement efficient
— 1div! for P and

— mul! for Pinv

Implementation: RandomizedPreconditioners.jl

14



Preconditioners have efficient operations for solvers

» We use multiple dispatch to implement efficient
— 1div! for P and

— mul! for Pinv

» These preconditioners can be easily passed to interative solvers:

using Krylov
x, stats = cg(A+uxI, b; M=Pinv)

using IterativeSolvers
x, ch = cg(ATA, b; Pl = P, log=true)

Implementation: RandomizedPreconditioners.jl 14



Several sketches are included

» Positive semidefinite matrices: Nystrom Sketch

A = NystromSketch (A, k, r)

Implementation: RandomizedPreconditioners. jl

15



Several sketches are included

» Positive semidefinite matrices: Nystrom Sketch

A = NystromSketch (A, k, r)

» Symmetric matrices: Eigen Sketch

A = EigenSketch (A, k, r)

Implementation: RandomizedPreconditioners. jl

15



Several sketches are included

» Positive semidefinite matrices: Nystrom Sketch

A = NystromSketch (A, k, r)

» Symmetric matrices: Eigen Sketch

A = EigenSketch (A, k, r)

» General matrices: Randomized SVD

A = RandomizedSVD (A, k, r; g=10)

Implementation: RandomizedPreconditioners.jl



These sketches come with several utilities including

» Fast multiplication:

= NystromSketch (A, k, r)
x v .== A.U » ALAN » A.U'*x v

>
|

= RandomizedSVD (A, k, r)
x v .== A.U * ALAN » A.V' %« v

T

Implementation: RandomizedPreconditioners. jl

16



These sketches come with several utilities including

» Fast multiplication:

= NystromSketch (A, k, r)
x v .== A.U » ALAN » A.U'*x v

>

= RandomizedSVD (A, k, r)
x v .== A.U * ALAN » A.V' %« v

T

» Adaptive sketch size selection:

#Doubles sketch size until ||A - A|| is small
A = adaptive_sketch (A, r0, EigenSketch)

Implementation: RandomizedPreconditioners. jl

16



Examples

Examples

Qutline

17



CG is faster on regression for small overhead

Ridge regression with ~ 4.3k features (guillermo dataset, OpenML)

Eigenvalues of A, Amax = 1230.0 Convergence of CG

Eigenvalues of A No Preconditioner
=led

Nystrom, r = 2000

residual

110

°

o 250 500 750 1000
1000 2000 3000 4000 iteration

Figure: Spectrum (left) and convergence for various sketch sizes (right)

Examples 18



And it works on large examples too!

Ridge regression with 15k features, solved in <5s on a laptop

Convergence of CG

No Preconditioner

——— Nystrom Preconditioner
Diagonal Preconditioner

residual

L L
0 50 100

. .
150 200
iteration

Figure: Nystrom PCG vs Jacobi (diagonal) PCG vs vanilla CG

Examples

19



Where to go from here?

» To use: RandomizedPreconditioners. jl
— Works with LinearSolve. j1

» To learn: Zach's paper on Nystrom PCG [FTU21]
— Also check out Martinsson & Tropp survey [MT21]

Examples

20



Future Directions

Future Directions

Qutline

21



Future Work

» Adding additional test matrices

— e.g., Subsampled Scrambled Fourier Transform
— Providing better support for sparse matrices

» Adding general preconditioners for nonsymmetric systems
— This is an open research question

» Performance and robustness

> Applications!

Future Directions

22



References

[FTU21] Zachary Frangella, Joel A Tropp, and Madeleine Udell.

“Randomized Nystrom Preconditioning”. In: arXiv
preprint arXiv:2110.02820 (2021).

[MT21] PG Martinsson and JA Tropp. “Randomized numerical
linear algebra: foundations & algorithms”. In: arXiv
preprint arXiv:2002.01387 (2021).

[Tro+17] Joel A Tropp et al. “Practical sketching algorithms for
low-rank matrix approximation”. In: SIAM Journal on
Matrix Analysis and Applications 38.4 (2017),
pp. 1454-1485.

Future Directions

23



Thank you

» Package: RandomizedPreconditioners. jl

» Contact: tdiamand@mit.edu, zjf4@cornell.edu

Future Directions

24



	Preconditioning Linear Systems
	Implementation: RandomizedPreconditioners.jl
	Examples
	Future Directions
	References

